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SUMMARY

As of 28 January 2003, all spatial and statistical analyses in the John Day, Wenatchee, and Yakima subbasins have been completed. 

DATA

( Redd Counts – Redd count data were obtained from StreamNet (2002) initially, and supplemental data were obtained from other sources as necessary (including the NWFSC spawner database, unpublished data).  To our knowledge, we worked with comprehensive datasets. All index reach segments were mapped to either 1:24k or 1:100k USGS stream networks.

( Geospatial – Most geospatial datalayers were readily available from previous SWAM analyses done in the Willamette and Salmon River basins (see Table 1). However, the following had to be generated or extensively manipulated: 1:24k stream network and stream junctions for the John Day; 10 m DEM mosaicking and error correcting; watershed flow accumulations; and explicit maps of index reach segments.

ANALYSIS

( Spatial – Jeff Cowen, with the NWFSC Data Management Team, created a tool in ArcView that greatly accelerated running the spatial component of SWAM. It also improved accuracy and reduced the likelihood of errors. Spatial analyses were completed in three subbasins for chinook, and also for steelhead in one of the subbasins (Table 2, and Figure 1). Analyses were run at three areas of influence (AOI) or spatial scales: reach (500 m buffer around index reach); HUC 6 buffer (HUC 6 catchments directly contacting index reach); and watershed (entire catchment flowing into given index reach). Output from the spatial overlays at the three different scales, with the various GIS habitat data layers, was summarized in a table, created using the aforementioned ArcView tool. This out put was then used for the statistical portion of the modeling.

( Statistical – Statistical analyses have been completed for each of the four SWAM runs described in the Table 2.  David Jensen applied a mixed models approach at each of the three areas of influence described above and for each of the four SWAM runs independently.  The mixed models approach allows for temporally correlated observations within a reach and makes use of all the available data.  It was not necessary to average redd counts within a reach or ignore reaches with missing data.  We had access to excellent habitat data, which enabled several new variables (not available for earlier SWAM runs) that describe habitat change.  For each of area of influence and each run, a set of best models was developed using a modified all subsets routine.  All models were tested to check than no one observation was driving the results using Cook’s distance, modified for use with mixed models.  Each potential model has also been tested for prediction accuracy using a leave-one-out cross-validation approach.  The final selection of best models has not been made because we are in the process of double-checking results.  The best set will be selected based on statistical significance of the predictors, model fit using the Bayesian information criteria (BIC), correlations between habitat variables in the model, robustness of the model, and predictive success in the cross-validation procedure.  All results and conclusions should be considered preliminary; and, of course, the correlations identified using SWAM should not be used to infer cause and effect.

GENERAL RESULTS

( Chinook salmon in the Wenatchee and John Day Rivers  – For each of these two SWAM runs, there were only 6 index reaches.  Model fitting was therefore limited.  The best results were achieved for the watershed area of influence.  The density of dams

and channel slope were the most useful variables for predicting the distribution of chinook salmon redds in the Wenatchee River.  Cattle grazing allotments were the best predictor of chinook salmon redd density in the John Day River.

( Chinook salmon in the Yakima River and steelhead in the John Day River  – There were large numbers of index reaches available for both of these SWAM runs and the modeling was successful for all three areas of influence.  Correlations between observed and predicted redd densities were often as high as 0.9.  Because there were a high number of good models, we expect to select a set of best models for each run and area of influence and average the predictions from that set of models.  We used that same approach in the Salmon and Willamette basins.  Attached figures show the fit between observed redd density and predicted redd density for each of three models using habitat variables at the watershed area of influence for both SWAM runs.  These habitat models will not necessarily be the final set of best models.  Overall, it appears that channel slope, vegetation, and dam density are strong predictors on chinook redd density on the Yakima River.  Hillslope and surrounding topography, precipitation, and vegetation are among the best predictors of steelhead redd density on the John Day river.

SPECIFIC RESULTS

John Day Subbasin Steelhead

Covariance Structure

A number of possible mixed models were evaluated in order to determine which would be the most appropriate for these particular data. Models with each of the potential covariates were fit using four different covariance structures. An autoregressive-moving average model (ARMA(1,1)),  autoregressive covariance structure of order 1 (AR(1)), compound symmetry (all correlations between years equal) and independence between years. Thus, for each AOI, there were 16 possible covariance/random coefficients combinations.

The results of the fitting of the one-variable models were similar for all AOI’s. The models with random intercept and slope, both correlated and independent, did not fit well. Generally, 25% or more of the covariance matrices for the random components were not positive definite (precluding hypothesis testing of the parameter estimates), and typically 50% or more of the models had variance components that were not different from zero (p > 0.05), yielding very few viable models. Thus, the random slope was dropped from consideration. 

Of the models with two intercepts, only the models with the AR(1) covariance structure and the independent observations fit well. For the ARMA(1,1) and compound symmetry models, the variance component associated with reach was not different from zero in many cases (p > 0.05) when 2 random intercepts were fit. 

There were six potential model structures that produced valid models for all potential predictor variables: ARMA(1,1) with 1 random intercept (year), AR(1) with 2 random intercepts (year and reach), AR(1) with 1 random intercept (year), compound symmetry with 1 random intercept (year), and independent observations with both 1 and 2 random intercepts. Each of these models was fit to each of the potential predictor variables and for each AOI, the results ranked by BIC. For each of the AOIs and all predictors, the ARMA(1,1) model with a random intercept for year was selected by the BIC. This structure was used for all subsequent modeling. 

Variable Selection

The first step in the variable selection procedure entailed fitting the model to each of the potential explanatory variables separately for each AOI. For the HUC AOI, there was some evidence that 14 might be useful in explaining the variation in redd density (defined as a p-value < 0.20); for the watershed AOI, 13 of the variables met this criteria; for the buffer AOI, 8 variables were selected. Table 3 identifies the variables by AOI. 

Two variable models were generated by fitting all combinations of these variables for each AOI. From these, all of the models for which both p-values were less than 0.10 were selected for three-variable modeling, as described below. This included 12 HUC models, 10 watershed models and 8 buffer models. 

For each of the two-variable models selected above, the remaining predictors were added singly to form three-variable models. Each of these was retained only if the p-value for all three fixed effects was less than 0.10. This resulted in eleven 3-variable HUC models, 14 3-variable watershed models and 16 3-variable buffer models. This procedure was repeated to select the best set of 4-variable models; each remaining variable was added to each of the 3-variable models, and those with all p-values less than 0.10 were retained resulting in eleven 4-variable HUC models, nine 4-variable watershed models and 33 4-variable buffer models. Repeating this procedure again added two 5-variable HUC models, four 5-variable watershed models and 27 5-variable buffer models to the pool. The procedure was halted at the five-variable stage since it was not resulting in much improvement in BIC, and many of the larger models had collinearity problems (see below).

At the end of the procedure outlined above, all of the models in which p-values for any of the parameters was greater than 0.05 were eliminated. Almost all of the potential explanatory variables are correlated with each of the other variables to some degree. Since collinearity is a problem that will need to be addressed anyway, those models in which any of the pairwise correlations exceeded 0.6 in absolute value were eliminated from consideration. The next step was the calculation of the condition index for each matrix of explanatory variables. The condition index is the ratio of each singular value to the maximum singular value and provides a measure of the stability of the solution (Belsey, Kuh & Welsh 1980). [The singular values are the square root of the eigen values]. Belsey, Kuh and Welsh suggest that condition indices greater than 10 indicate that collinearity may be severe enough to have an effect. All models that exceeded this recommendation were eliminated.

Cook’s distance measures the shift in the parameter estimates when a single observation is excluded, and is useful for flagging influential sites (Cook 1977). This is a fairly standard part of statistical software fitting least squares models, but has only recently begun to be applied to mixed models (e.g. Christensen et al. 1992).  Since the explanatory variables are the same for each of  the 43 sites, it was feasible to refit each model 43 times, leaving out one site each time, and calculate Cook’s D. Models with values of Cook’s D greater than 1.0 for at least one site were deemed unstable and eliminated from the analysis. A value of Cook’s D between 0.8 and 1.0 indicates a shift to near the 50th percentile of the confidence ellipsoid around β and is cause for concern (Cook 1977).

The next stage in model selection was a cross-validation procedure, which assessed the ability of the models to predict redd counts for sites not sampled. The data were divided into a training set, used to fit the model, and a validation set, used to assess the fit of the model with data not used in model fitting, by randomly selecting 10% of the observations for validation. To assess the fit, the correlation between the values predicted for the validation set and the measured redd densities was calculated, as was the root mean squared prediction error (RMSPE). This was repeated 1000 times for each model, resulting in 1000 correlation and RMSPE values. This is an external validation technique, and as such gives a better indication of how the model would perform for sites without redd count data (Harrell et al. 1996).  It is the same idea as the ‘leave-one-out’ approach, but using a validation set of size=1 is conservative in the sense that it tends to select an unnecessarily large model (Shao 1993), and by repeating the data splitting procedure multiple times, the results are not dependent on a particular split, which results in less variation in the accuracy measurements (Harrell et al. 1996). The results were evaluated by looking at the mean correlation and RMSPE from the 1000 runs (a measure of how well the model predictions fit the observations) and the standard deviation of these metrics (a measure of the precision of the predictions). Smaller variation was taken as an indication of a more stable predictive model. As expected, these measures coincided fairly well. Table 4 lists the criteria used for model evaluation including a summary of the cross-validation results. Definitions of the variable names used in the table follows; the change in vegetation was calculated by subtracting historic coverage from current coverage. Percentages refer to the percentage of the AOI in which that feature is present.

For the final model selection, the procedure outlined above was applied. Four models were selected for each AOI. These models are summarized below (Table 5).  

John Day Subbasin Chinook Salmon

Covariance Structure

A number of possible mixed models were evaluated in order to determine which would be the most appropriate for these particular data. Models with each of the potential covariates were fit using four different covariance structures. An autoregressive-moving average model (ARMA(1,1)),  autoregressive covariance structure of order 1 (AR(1)), compound symmetry (all correlations between years equal) and independence between years. Thus, for each AOI, there were 16 possible covariance/random coefficients combinations.

The results of the fitting of the one-variable models were similar for all AOI’s. The models with random intercept and slope, both correlated and independent, did not fit well. Generally, 25% or more of the covariance matrices for the random components were not positive definite (precluding hypothesis testing of the parameter estimates), and typically 50% or more of the models had variance components that were not different from zero (p > 0.05), yielding very few viable models. Thus, the random slope was dropped from consideration. For the models with two intercepts, none of the variance components associated with reach was different from zero (p > 0.08 in all cases), so this structure was dropped as well.

The four potential covariate structures fit with a random intercept for year produced valid models for all potential predictor variables. Each of these was fit to each of the potential predictor variables and for each AOI and the results ranked by BIC. For each of the AOIs and all predictors, the ARMA(1,1) model was selected by the BIC. This structure was used for all subsequent modeling. 

Variable Selection

The first step in the variable selection procedure entailed fitting the model to each of the potential explanatory variables separately for each AOI. For both the HUC and the buffer AOIs, only one variable (cattle) was correlated with redd density (defined as a p-value < 0.20); for the watershed AOI, eight of the variables met this criteria. In light of these results, two variable models were generated by fitting all combinations of the original set of variables for each AOI. From these, all of the models for which both p-values were less than 0.10 were selected for three-variable modeling, as described below. This included one HUC model, 12 watershed models and a single buffer model.  At this stage, the covariance structure was not fitting well, with the estimate for the gamma parameter at the boundary of the parameter space for some models. The model fitting was then repeated with an AR(1) covariance, which resulted in a much greater number of potential models. For the models in which the covariance structure fit well, the ARMA(1,1) model had a smaller BIC (on the order of 5-8%), otherwise the AR(1) model had the smaller BIC. Since the ARMA(1,1) covariance structure fit better (except in the situation noted above), it was used initially in the 3-variable modeling. 

For each of the two-variable models with the ARMA(1,1) covariance structure selected above, the remaining predictors were added singly to form three-variable models. Each of these was retained only if the p-value for all three fixed effects was less than 0.10. All of the 3-variable models that met this criteria had the problem with the ill-fitting covariance parameter mentioned above, so the AR(1) covariance structure was used instead. This resulted in five 3-variable HUC models, 52 3-variable watershed models and three 3-variable buffer models. The procedure was halted at the three-variable stage since there were only 6 index reaches.

At the end of the procedures outlined above, all of the models in which p-values for any of the parameters was greater than 0.05 were eliminated. For models fit to two covariance structures, only the model with the lower BIC was kept. Almost all of the potential explanatory variables are correlated with each of the other variables to some degree. Since collinearity is a problem that will need to be addressed anyway, those models in which any of the pairwise correlations exceeded 0.6 in absolute value were eliminated from consideration. The next step was the calculation of the condition index for each matrix of explanatory variables. The condition index is the ratio of each singular value to the maximum singular value and provides a measure of the stability of the solution (Belsey, Kuh & Welsh 1980). [The singular values are the square root of the eigen values]. Belsey, Kuh and Welsh suggest that condition indices greater than 10 indicate that collinearity may be severe enough to have an effect. All models that exceeded this recommendation were eliminated.

Cook’s distance measures the shift in the parameter estimates when a single observation is excluded, and is useful for flagging influential sites (Cook 1977). This is a fairly standard part of statistical software fitting least squares models, but has only recently begun to be applied to mixed models (e.g. Christensen et al. 1992).  Since the explanatory variables are the same for each of  the 6 sites, it was feasible to refit each model 6 times, leaving out one site each time, and calculate Cook’s D. Models with values of Cook’s D greater than 1.0 for at least one site were deemed unstable and eliminated from the analysis. A value of Cook’s D between 0.8 and 1.0 indicates a shift to near the 50th percentile of the confidence ellipsoid around β and is cause for concern (Cook 1977).

The final model selection criteria was cross-validation, which assessed the ability of the models to predict redd counts for sites not sampled. The data were divided into a training set, used to fit the model, and a validation set, used to assess the fit of the model with data not used in model fitting, by randomly selecting 10% of the observations for validation. To assess the fit, the correlation between the values predicted for the validation set and the measured redd densities was calculated, as was the root mean squared prediction error (RMSPE). This was repeated 1000 times for each model, resulting in 1000 correlation and RMSPE values. This is an external validation technique, and as such gives a better indication of how the model would perform for sites without redd count data (Harrell et al. 1996).  It is the same idea as the ‘leave-one-out’ approach, but using a validation set of size=1 is conservative in the sense that it tends to select an unnecessarily large model (Shao 1993), and by repeating the data splitting procedure multiple times, the results are not dependent on a particular split, which results in less variation in the accuracy measurements (Harrell et al. 1996). The results were evaluated by looking at the mean correlation and RMSPE from the 1000 runs (a measure of how well the model predictions fit the observations) and the standard deviation of these metrics (a measure of the precision of the predictions). Smaller variation was taken as an indication of a more stable predictive model. As expected, these measures coincided fairly well. 

Only three models met the selection criteria with respect to correlation, Cook’s distance and p-value. The cross validation analysis was applied to these models, Table 6 summarizes the results. Definitions of the variable names used in the table follows; the change in vegetation was calculated by subtracting historic coverage from current coverage. Percentages refer to the percentage of the AOI in which that feature is present. Since there were only three models, the final selection criteria outlined in the introduction were not applied, though both the correlation and RMSPE were within the guidelines specified there. Thus, these three models were selected as the final models. They are summarized in Table 7. 

Wenachee Subbasin Chinook Salmon

Covariance Structure

A number of possible mixed models were evaluated in order to determine which would be the most appropriate for these particular data. Models with each of the potential covariates were fit using four different covariance structures. An autoregressive-moving average model (ARMA(1,1)),  autoregressive covariance structure of order 1 (AR(1)), compound symmetry (all correlations between years equal) and independence between years. Thus, for each AOI, there were 16 possible covariance/random coefficients combinations.

The results of the fitting of the one-variable models were similar for all AOI’s. The models with random intercept and slope, both correlated and independent, did not fit well. Generally, 25% or more of the covariance matrices for the random components were not positive definite (precluding hypothesis testing of the parameter estimates), and up to 50% of the models had variance components that were not different from zero (p > 0.05). Thus, the random slope was dropped from consideration. In all of the models with two intercepts, there was no evidence that the variance of the intercept associated with reach was different from zero (p > 0.08). 

The model with a random intercept for year was combined with each of the four covariance structures described above and fit to each of the potential predictor variables. For each AOI, the resulting models were ranked by BIC. For each of the AOIs and all predictors, the model with the ARMA(1,1) covariance was selected. This structure was used for all subsequent modeling. 

Variable Selection

The first step in the variable selection procedure entailed fitting the model to each of the potential explanatory variables separately for each AOI. For the HUC AOI, there was some evidence that 3 might be useful in explaining the variation in redd density (defined as a p-value < 0.20); for the watershed AOI, 8 of the variables met this criteria; for the buffer AOI, two variables were selected. Table 8 identifies the variables by AOI. 

Since the pool of potential predictors was small for two of the three AOIs, two variable models were generated by fitting all combinations of all predictors for each AOI. From these, all of the models for which both p-values were less than 0.10 were selected for three-variable modeling, as described below. This included 49 HUC models, 50 watershed models and 32 buffer models. 

For each of the two-variable models selected above, the remaining predictors were added singly to form three-variable models. Each of these was retained only if the p-value for all three fixed effects was less than 0.10. This resulted in 143 3-variable HUC models, 249 3-variable watershed models and 92 3-variable buffer models. This procedure was halted at the 3-variable stage because there were only six index reaches.

At the end of the procedure outlined above, all of the models in which p-values for any of the parameters was greater than 0.05 were eliminated. This left 61 HUC models, 215 watershed models and 86 buffer models. Almost all of the potential explanatory variables are correlated with each of the other variables to some degree. Since collinearity is a problem that will need to be addressed anyway, those models in which any of the pairwise correlations exceeded 0.6 in absolute value were dropped from consideration. Most of the remaining models were eliminated at this step, including 52 HUC models, 31 watershed models (only the top 30 3-variable models were evaluated) and 78 buffer models. The next step was the calculation of the condition index for each matrix of explanatory variables. The condition index is the ratio of each singular value to the maximum singular value and provides a measure of the stability of the solution (Belsey, Kuh & Welsh 1980). [The singular values are the square root of the eigen values]. Belsey, Kuh and Welsh suggest that condition indices greater than 10 indicate that collinearity may be severe enough to have an effect. The four buffer models that exceeded this recommendation were eliminated.

Cook’s distance measures the shift in the parameter estimates when a single observation is excluded, and is useful for flagging influential sites (Cook 1977). This is a fairly standard part of statistical software fitting least squares models, but has only recently begun to be applied to mixed models (e.g. Christensen et al. 1992).  Since the explanatory variables are the same for each of  the six sites, it was feasible to refit each model six times, leaving out one site each time, and calculate Cook’s D. Models with large values of Cook’s D for at least one site were deemed unstable and eliminated from the analysis. Generally, 1.0 is used for the cutoff, but since the pool of potential models was so small several models with Cook’s distances slightly greater than 1.0 were retained. A value of Cook’s D between 0.8 and 1.0 indicates a shift to near the 50th percentile of the confidence ellipsoid around β and is cause for concern (Cook 1977).

The next phase of model selection was cross-validation, which assessed the ability of the models to predict redd counts for sites not sampled. The data were divided into a training set, used to fit the model, and a validation set, used to assess the fit of the model with data not used in model fitting, by randomly selecting 10% of the observations for validation. To assess the fit, the correlation between the values predicted for the validation set and the measured redd densities was calculated, as was the root mean squared prediction error (RMSPE). This was repeated 1000 times for each model, resulting in 1000 correlation and RMSPE values. This is an external validation technique, and as such gives a better indication of how the model would perform for sites without redd count data (Harrell et al. 1996).  It is the same idea as the ‘leave-one-out’ approach, but using a validation set of size=1 is conservative in the sense that it tends to select an unnecessarily large model (Shao 1993), and by repeating the data splitting procedure multiple times, the results are not dependent on a particular split, which results in less variation in the accuracy measurements (Harrell et al. 1996). The results were evaluated by looking at the mean correlation and RMSPE from the 1000 runs (a measure of how well the model predictions fit the observations) and the standard deviation of these metrics (a measure of the precision of the predictions). Smaller variation was taken as an indication of a more stable predictive model. As expected, these measures coincided fairly well. 

Only thirteen models met the criteria regarding p-values, correlation and Cook’s distance (2 HUC models, 10 watershed models and 1 buffer model). Table 9 lists the criteria used for model evaluation and includes a summary of the cross-validation results. Definitions of the variable names used in the table follows; the change in vegetation was calculated by subtracting historic coverage from current coverage. Percentages refer to the percentage of the AOI in which that feature is present.

The final model selection described above were then applied to select the final group of models for the watershed AOI; there was only one candidate for the buffer AOI and two candidate for the HUC AOI, all of which performed adequately in the cross-validation.  The models selected are summarized below (Table 10).

Yakima Subbasin Chinook Salmon
Covariance Structure

A number of possible mixed models were evaluated in order to determine which would be the most appropriate for these particular data. Models with each of the potential covariates were fit using four different covariance structures. An autoregressive-moving average model (ARMA(1,1)),  autoregressive covariance structure of order 1 (AR(1)), compound symmetry (all correlations between years equal) and independence between years. Thus, for each AOI, there were 16 possible covariance/random coefficients combinations.

The results of the fitting of the one-variable models were similar for all AOI’s. The models with random intercept and slope, both correlated and independent, did not fit well. Generally, 10-20% of the models did not converge, 25% or more of the covariance matrices for the random components were not positive definite (precluding hypothesis testing of the parameter estimates), and typically 50% of the models had variance components that were not different from zero (p > 0.05). Thus, the random slope was dropped from consideration. 

Of the models with two intercepts, only the models with the AR(1) covariance structure and the independent observations fit well. For the ARMA(1,1) model, the gamma parameter was not different from zero (p > 0.09 in all cases) when 2 random intercepts were fit, and for the compound symmetry model, in roughly 25% of the models both the reach variance and the correlation among observations were not different from zero (p > 0.49). 

There were six potential model structures that produced valid models for all potential predictor variables: ARMA(1,1) with 1 random intercept (year), AR(1) with 2 random intercepts (year and reach), AR(1) with 1 random intercept (year), compound symmetry with 1 random intercept (year), and independent observations with both 1 and 2 random intercepts. Each of these models was fit to each of the potential predictor variables and for each AOI, the results ranked by BIC. For each of the AOIs and for all predictors, the AR(1) model with 2 random intercepts was selected by the BIC. This structure was used for all subsequent modeling. 

Variable Selection

The first step in the variable selection procedure entailed fitting the model to each of the potential explanatory variables separately for each AOI. For the HUC AOI, there was some evidence that 17 might be useful in explaining the variation in redd density (defined  as a p-value < 0.20); for the watershed AOI, 18 of the variables met this criteria; for the buffer AOI, 11 variables were selected. Table 11 identifies the variables by AOI. 

Two variable models were generated by fitting all combinations of these variables for each AOI. From these, all of the models for which both p-values were less than 0.10 were selected for three-variable modeling, as described below. This included 27 HUC models, 35 watershed models and 23 buffer models. 

For each of the two-variable models selected above, the remaining predictors were added singly to form three-variable models. Each of these was retained only if the p-value for all three fixed effects was less than 0.10. This resulted in 50 3-variable HUC models, 80 3-variable watershed models and 75 3-variable buffer models. This procedure was repeated to select the best set of 4-variable models; each remaining variable was added to each of the 3-variable models, and those with all p-values less than 0.10 were retained. The procedure was halted at the four-variable stage since it was not resulting in much improvement in BIC, and many of the larger models had collinearity problems (see below).

At the end of the procedure outlined above, all of the models with p-values for any of the parameters greater than 0.05 were eliminated. Almost all of the potential explanatory variables are correlated with each of the other variables to some degree. Since collinearity is a problem that will need to be addressed anyway, those models in which any of the pairwise correlations exceeded 0.6 in absolute value were eliminated from consideration. The next step was the calculation of the condition index for each matrix of explanatory variables. The condition index is the ratio of each singular value to the maximum singular value and provides a measure of the stability of the solution (Belsey, Kuh & Welsh 1980). [The singular values are the square root of the eigen values]. Belsey, Kuh and Welsh suggest that condition indices greater than 10 indicate that collinearity may be severe enough to have an effect. All models that exceeded this recommendation were eliminated.

Cook’s distance measures the shift in the parameter estimates when a single observation is excluded, and is useful for flagging influential sites (Cook 1977). This is a fairly standard part of statistical software fitting least squares models, but has only recently begun to be applied to mixed models (e.g. Christensen et al. 1992).  Since the explanatory variables are the same for each of  the 20 sites, it was feasible to refit each model 20 times, leaving out one site each time, and calculate Cook’s D. Models with values of Cook’s D greater than 1.0 for at least one site were deemed unstable and eliminated from the analysis. A value of Cook’s D between 0.8 and 1.0 indicates a shift to near the 50th percentile of the confidence ellipsoid around β and is cause for concern (Cook 1977).

The final model selection criteria was cross-validation, which assessed the ability of the models to predict redd counts for sites not sampled. The data were divided into a training set, used to fit the model, and a validation set, used to assess the fit of the model with data not used in model fitting, by randomly selecting 10% of the observations for validation. To assess the fit, the correlation between the values predicted for the validation set and the measured redd densities was calculated, as was the root mean squared prediction error (RMSPE). This was repeated 1000 times for each model, resulting in 1000 correlation and RMSPE values. This is an external validation technique, and as such gives a better indication of how the model would perform for sites without redd count data (Harrell et al. 1996).  It is the same idea as the ‘leave-one-out’ approach, but using a validation set of size=1 is conservative in the sense that it tends to select an unnecessarily large model (Shao 1993), and by repeating the data splitting procedure multiple times, the results are not dependent on a particular split, which results in less variation in the accuracy measurements (Harrell et al. 1996). The results were evaluated by looking at the mean correlation and RMSPE from the 1000 runs (a measure of how well the model predictions fit the observations) and the standard deviation of these metrics (a measure of the precision of the predictions). Smaller variation was taken as an indication of a more stable predictive model. As expected, these measures coincided fairly well. Table 12 lists the criteria used for model evaluation including a summary of the cross-validation results. Definitions of the variable names used in the table follows; the change in vegetation was calculated by subtracting historic coverage from current coverage. Percentages refer to the percentage of the AOI in which that feature is present.

For the final model selection, the procedure outlined above was applied. Four models were selected for each AOI. These models are summarized below (Table 13).  

Several predictor variables were created by summing the percentages of two or more related categories within a given data layer. This was done both to reduce the pool of potential predictors, and to increase the number of index reaches with non-zero values for a given predictor. If there were fewer than three index reaches with non-zero values for a predictor, then that predictor was eliminated from the pool outright; it was preferable that most of the index reaches had non-zero values. The categories combined to form the new predictor variables are listed below (Table 14). The change in land cover variables were created be subtracting current coverage from historic coverage. Thus, zero indicates no change, positive values indicate an increase in coverage, while negative values represent a decrease from historic conditions. The open water variable was derived from the land use/land cover data layer rather than the lithology layer.  

Summary of Model Fitting Procedure

Mixed models were utilized to explore the relationships between redd density and the candidate explanatory variables. Mixed models are those that have both fixed effects and random effects. One advantage in using mixed models is that they can accommodate correlated responses and heterogeneous variances. Since these data were collected over time, it is likely that the measurements within each site are serially autocorrelated. Using a mixed model, this autocorrelation can be modeled and the fit of various covariance structures tested. The Bayesian Information Criterion (BIC) was used to select the most appropriate covariance structure, as well as to compare models (Littell et al. 1996). The BIC is essentially twice the log likelihood value (a measure of well the model fits) plus a penalty for the number of parameters estimated.  Smaller values indicate a better fit. All statistical analyses were generated using SAS/STAT software, Version 8.2 of the SAS System for Windows. Copyright © 1999-2001 SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA. Details regarding the selection of an appropriate covariance structure for each subbasin are given in the sections corresponding to each subbasin. 

Four random coefficients models were evaluated. The slope and intercept were initially modeled as random effects. In this scenario, the slope and intercept for each year is allowed to vary randomly from an average slope and intercept. These are also referred to as hierarchical linear models (Byrk & Raudenbush 1992). The appropriateness of these models was assessed by noting whether the variance of the slope and/or intercept was significantly different from zero, which was assessed with Wald tests (Casela & Berger 1990), as well as by comparing the BICs of the various models. The intercept was also modeled as a random function of both year and reach, i.e. the observed intercept depends on both year and location. Lastly, the intercept was allowed to vary randomly by year only.  

There were three different areas of influence (AOI) used for the calculation of the covariate data. The watershed AOI included all area in the watershed above the index reach, the HUC AOI included the area in each 6th field HUC adjacent to the index reach, and the buffer AOI included a 500-meter strip an either side of the index reach. Models were fit to the covariates from each AOI independently, and the best models from each are compared at the end of the model selection process.

At the end of the variable selection process, there were generally upwards of 25 candidate models. The initial variable selection process is described in each subbasin section. The remainder of the selection process primarily identified those models with undesirable properties; these models were subsequently eliminated. Among the criteria and methods used to evaluate models were high pairwise correlation, large Cook’s distance, multicollinearity and a cross-validation procedure. Details about these procedures are also included in the report sections for each subbasin. 

Final model selection
The final model selection procedure involved a ranking of the remaining models by several criteria. All of the remaining models appeared to perform well; the goal was to identify at most four models for each AOI within a given subbasin that could be considered best. A secondary consideration included the selection of models with a diversity of predictor variables. Selection occurred in the following sequence, with the process halted as soon as the pool of models dropped to four or fewer. In most cases, it was not necessary to proceed through the entire list before the pool of models was decreased sufficiently.

1. Rank all remaining models by BIC.

2. Eliminate models where either the correlation between the observed and predicted response in the cross-validation is less than 99% of the correlation from the best model, or the root mean squared prediction error (RMSPE) is more than 2% greater than the model with the lowest prediction error.

3. Eliminate models in which the standard deviation of either the correlation or the RMSPE from the cross-validation is more than 10% greater than the model with the smallest standard deviation. 

4. If two models are identical except that one includes a current habitat variable and the other includes the change in that variable, eliminate the model with the largest BIC.

5. Eliminate models where the elimination of one or more predictors increases the BIC.

6. Eliminate models in which all predictors are non-habitat variables.

7. Starting with the model with the largest BIC, eliminate models where all of the predictor variables are included in at least one model with a lower BIC.

8. Identify jumps in BIC that separate the remaining models into groups and select whole groups that result in four or fewer models being selected. If the models fall into groups such that all one-variable models are in one group and larger models in another with a larger BIC, then select models from each of these groups. 

The final group of models is summarized below (Table 15). Further details about the models, including parameter estimates and significance levels, are presented in the subbasin sections of this document. Predictions of redd density for each subbasin could be made by averaging the predictions from several models. The BIC can be used to compare models from the various AOIs within a subbasin, though cannot compare  models from different subbasins because in order to do so, the set of response variables must be identical.
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Table 15. Summary of Model Selection Process.

	Subbasin
	AOI
	Model
	BIC

	John Day (steelhead)
	Buffer
	sheep grazing
	2122.2

	
	
	precipitation
	2126.7

	
	
	AOI area + ∆ conifer forest
	2136.3

	
	
	precipitation + ponderosa pine
	2138.3

	
	Watershed
	∆ alpine veg.
	2119.1

	
	
	sheep grazing
	2120.8

	
	
	cattle grazing
	2124.3

	
	
	precipitation
	2127.3

	
	HUC
	successional forest
	2117.5

	
	
	∆ wetlands
	2119.3

	
	
	∆ alpine veg.
	2119.5

	
	
	successional forest + ∆ conifer forest + screens
	2130.8

	John Day (chinook)
	Buffer 
	cattle grazing
	516.83

	
	Watershed
	cattle grazing
	517.52

	
	
	sedimentary geology + urbanization
	514.95

	Yakima (chinook)
	Buffer
	ch. slope + riparian
	696.37

	
	
	ch. slope + riparian + successional forest
	699.34

	
	
	ch. slope + riparian + succ. forest + wetlands
	705.39

	
	
	mines + riparian
	707.02

	
	Watershed
	ch. slope + riparian 
	693.88

	
	
	dams
	696.57

	
	
	agriculture + ch. slope
	698.62

	
	
	ch. slope + riparian + ∆ alpine
	698.92

	
	HUC
	ch. slope + riparian
	699.31

	
	
	ch. slope + agriculture
	704.27

	
	
	ch. slope + cattle grazing
	704.79

	
	
	ch. slope + dams + alpine veg. + ∆ arid veg.
	705.03

	Wenachee (chinook)
	Buffer
	alluvium + open water
	552.74

	
	Watershed
	ch. slope + dams + ∆ open water
	519.77

	
	
	ch. slope + dams + ∆ ponderosa pine
	523.82

	
	
	alluvium + mines
	531.33

	
	
	hill slope + ∆ successional forest
	531.54

	
	HUC
	hill slope + mines
	522.06

	
	
	mines + ∆ open water
	530.33


Table 14. Predictor variables for geology and land use and land cover (LULC) that were created by combining categories within data layers. Note: not all categories were present for all subbasins or all AOIs within a subbasin. 

	Predictor Variable
	Original Categories

	Igneous (Geology)
	· Calc-alkaline Intrusive

· Calc-alkaline Meta-volcanic

· Calc-alkaline Volcanoclastic

· Felsic Pyroclastic

· Felsic Volcanic Flow

· Mafic Intrusive

· Mafic Meta-volcanic

· Mafic Volcanic Flow

· Tuff

· Ultramafic

	Sedimentary (Geology)
	· Sandstone

· Siltstone

· Mixed Eugeosynclinal

	Metamorphic (Geology)
	· Granitic Gneiss

· Interlayered Meta-sedimentary

· Mafic Gneiss

· Meta-sedimentary Phyllite and Schist

· Argillite and Slate

· Carbonate

· Shale And Mudstone

	Conifer Forest (LULC)
	· Montane Mixed Conifer Forest

· Eastside (Interior) Mixed Conifer Forest

· Lodgepole Pine Forest and Woodlands

	
	· 

	Alpine Vegetation (LULC)
	· Subalpine Parklands

· Alpine Grasslands and Shrublands

	Arid Vegetation (LULC)
	· Western Juniper and Mountain Mahogany Woodlands

· Eastside (Interior) Grasslands

· Shrub-steppe

· Dwarf Shrub-steppe

· Desert Playa and Salt Scrub

	Wetland Vegetation (LULC)
	· Herbaceous Wetlands

· Montane Coniferous Wetlands


Table 1: Geographic information system (GIS) datalayers used in habitat analysis.  All data layers were generated by other entities (such as federal state, and academic institutions), with the exception of hillslope, channel slope, and stream junctions, which we generated ourselves. The “k” after all of the map scales is an abbreviation for “kilo” or 1,000. Therefore, a map scale of 1:100k is equal to 1:100,000. “Gridcell Size” is the size of each individual pixel or gridcell for raster based datalayers.  Gridcell size is separated from map scale by a horizontal dotted line for clarity.

	Datalayer
	Map Scale

Gridcell Size
	Description

	Hillslope
	1:24k

------------
30 m
	Hillslope gradient generated from USGS 30 m Digital Elevation Model (DEM), using ARC/INFO. Calculated the slope of every 30 m gridcell in the DEM. Hillslope for any given index reach is then calculated by summing all of the 30 m DEM gridcells contained in any index reaches’ associated watershed or reach scale area of influence that has a slope less than 6% (for steelhead) or 1.5% (for chinook).  

	Channel Slope
	1:24k

------------
30 m
	Calculated from USGS 1:24k 30 m digital elevation models (DEM). Defined as rise (upstream elevation minus downstream elevation of index reach) over run (river km length of index reach) multiplied by 100

	Stream Junctions
	1:24k

------------

N/A
	Used ARC/INFO to calculate the density of stream junctions for each of the three areas of influence using the USGS 1:24k stream network data layer. Used for steelhead only in the John Day subbasin.

	Air Temperature
	N/A

------------
2 km
	Mean annual temperature for 1989 (Thornton et al., 1997, acquired from ICBEMP, 1999).  1989 was considered a “normal” year. Expressed as an area weighted mean, where each gridcell is multiplied by its temperature value, summed over all gridcells, and then divided by the appropriate area of influence (reach, HUC6 or watershed).

	Precipitation
	N/A

------------
500 m
	Total annual precipitation for 1989, considered a “normal” year from Precipitation Elevation Regressions on Independent Slopes Model (PRISM) (Daly et al. 1994), acquired from the Interior Columbia Basin Ecosystem Management Project (ICBEMP) in 1999. Expressed as an area weighted mean, where each gridcell is multiplied by its precipitation value, summed over all gridcells, and then divided by the corresponding area of influence.

	Major

lithology
	1:500k

------------
N/A
	USGS classification of geologic map units according to major lithology.

	Land Use and Land Cover Change
	1:100k & 1000k

------------
25 m & 1 km
	Change in land use and land cover calculated using Northwest Habitat Institute (2000) GIS data layers of historical (ca. 1850) and current (ca. 2000) wildlife-habitat types. Raster historical map was “subtracted” from the current map using ESRI ARC/INFO in order to calculate percent change in each of the land use and land cover categories. Wildlife-habitat types maps originally published in Johnson and O'Neil (2001)

	Wilderness
	1:24 - 1:500k

------------

N/A
	Designated wilderness areas on Forest Service, Bureau of Land Management and National Park lands. Acquired from and compiled by ICBEMP (1999).

	Livestock
	1:24 - 1:126k

------------

N/A
	Livestock grazing allotments. U.S. Forest Service, and BLM delineations of areas where livestock can graze. Used only on sheep and cattle categories. Acquired from ICBEMP (1999).

	Roads
	1:100k

------------

N/A
	Polyline representation of road networks.  Expressed as linear km of road per unit area of appropriate AOI. Source material includes USGS DLG, USGS road/street maps, field compilation, survey data, and Census Bureau TIGER/Line files as provided by Wessex Corp. Acquired from and compiled by ICBEMP (1999).

	Mines
	1:24 - 1:100k

------------

N/A
	Mining related hazard potential sites (ICBEMP 1999). Compiled by ICBEMP (1999) from 7.5' & 15' USGS paper quads (site investigation field maps), published and unpublished literature, mining company records, and public land records.

	Dams
	N/A
	Dams with greater than 50 acre feet storage capacity. Acquired from ICBEMP (1999) and derived from the National Inventory of Dams, U.S. Army Corps of Engineers, and State Water Resource Department Dam Safety Divisions.

	Diversions
	1:100k

------------

N/A
	U.S. Forest Service database of water irrigation diversions, screens, ladders, and pumps, supplemented by BPA, and State Fish and Game data. Only used diversions for our analyses (screened, unscreened, and unknown). Acquired from and compiled by ICBEMP (1999).

	Streams
	1:100k

------------

N/A
	Polyline representation of the stream networks, generated by USGS.

	Watershed AOI
	1:24k

------------

N/A
	Polygon representation of total area upslope of the downstream end of any given index reach. Generated from a USGS 30 m DEM.

	HUC6 AOI
	1:24k

------------

N/A
	Polygon representation of all 6th field hydrologic units (HU’s) that touch a given index reach. Generated using ICBEMP (1999) sixth field hydrologic units (HU’s).

	Reach AOI
	1:24k

------------

N/A
	Polygon representation of area within 500 m of any given index reach. Generated around each index reach in ESRI ARC/INFO using BUFFER command.


Table 2. Summary table of subbasins and species of salmon for which SWAM was used.

	
	John Day
	Wenatchee
	Yakima

	Chinook
	X
	X
	X

	Steelhead
	X
	
	


Table 3. Predictor Variables Selected for 2-variable All-subsets Modeling

	Variable
	HUC AOI
	Watershed AOI
	Buffer AOI

	Agriculture
	
	X
	

	Alpine Vegetation
	X
	X
	

	∆ Alpine Vegetation
	X
	X
	

	Area
	X
	
	X

	1989 Average Temp
	X
	X
	X

	Cattle
	X
	X
	X

	Successional Forest
	X
	X
	

	Conifer
	
	
	X

	∆ Conifer
	X
	X
	X

	Hill Slope
	X
	
	

	Ponderosa Pine
	X
	X
	X

	∆ Ponderosa Pine
	X
	X
	

	Precipitation
	X
	X
	X

	Sheep
	X
	X
	X

	Open Water
	
	X
	

	∆ Wetland Vegetation
	X
	
	

	Wetland Vegetation
	X
	X
	


Table 4a. Model Evaluation Results for HUC AOI. 

	MODEL
	BIC
	max

|corr|
	max

cond #
	max

p-value
	corr

(obs,pred)
	stdorr)
	RMSPE
	std

RMSPE

	success
	2117.52
	NA
	NA
	0.0236
	0.6949
	0.0573
	0.4612
	0.0738

	wetlands
	2118.72
	NA
	NA
	0.0140
	0.6873
	0.0595
	0.4697
	0.0737

	wetland2
	2119.27
	NA
	NA
	0.0195
	0.6902
	0.0584
	0.4651
	0.0730

	alpine
	2119.47
	NA
	NA
	0.0043
	0.6896
	0.0594
	0.4732
	0.0759

	alpine2
	2119.49
	NA
	NA
	0.0043
	0.6899
	0.0576
	0.4691
	0.0748

	sheep
	2121.54
	NA
	NA
	0.0020
	0.6932
	0.0567
	0.4673
	0.0721

	cattle
	2123.57
	NA
	NA
	0.0046
	0.6853
	0.0587
	0.4727
	0.0760

	precip
	2127.55
	NA
	NA
	0.0100
	0.6884
	0.0575
	0.4695
	0.0754

	area
	2128.06
	NA
	NA
	0.0256
	0.6913
	0.0565
	0.4695
	0.0729

	success-conifer2-screens
	2130.78
	0.383
	3.36
	0.0134
	0.6900
	0.0568
	0.4682
	0.0723

	area-success
	2131.78
	0.043
	5.06
	0.0245
	0.6955
	0.0600
	0.4630
	0.0739

	success-pine2-screens
	2132.08
	0.253
	3.30
	0.0331
	0.6899
	0.0584
	0.4665
	0.0756

	success-pine2-screens-alpine2
	2140.32
	0.253
	3.44
	0.0318
	0.6911
	0.0590
	0.4712
	0.0748

	success-pine2-screens-alpine
	2140.99
	0.253
	3.45
	0.0422
	0.6924
	0.0580
	0.4643
	0.0740

	area-conifer2
	2141.11
	0.062
	5.25
	0.0467
	0.6851
	0.0607
	0.4718
	0.0766

	success-pine2-screens-sheep
	2142.90
	0.253
	3.41
	0.0381
	0.6877
	0.0622
	0.4726
	0.0810

	success-area-pine2
	2145.14
	0.043
	5.86
	0.0487
	0.6875
	0.0592
	0.4721
	0.0783

	success-conifer2-area-screens
	2145.60
	0.383
	6.31
	0.0320
	0.6875
	0.0592
	0.4721
	0.0783


Table 4b. Model Evaluation Results for Watershed AOI. 

	COL1
	BIC
	max

|corr|
	max

cond #
	max

p-value
	corr

(obs,pred)
	std

corr
	RMSPE
	std

RMSPE

	alpine2
	2119.09
	NA
	NA
	0.0037
	0.693
	0.0591
	0.465
	0.0751

	alpine
	2119.50
	NA
	NA
	0.0046
	0.692
	0.0597
	0.468
	0.0737

	sheep
	2120.77
	NA
	NA
	0.0011
	0.695
	0.0550
	0.463
	0.0713

	cattle
	2124.27
	NA
	NA
	0.0067
	0.692
	0.0556
	0.470
	0.0731

	conifer2
	2125.96
	NA
	NA
	0.0232
	0.690
	0.0580
	0.473
	0.0756

	pine2
	2126.02
	NA
	NA
	0.0216
	0.688
	0.0604
	0.473
	0.0765

	success-sheep
	2126.02
	0.112
	2.01
	0.0355
	0.692
	0.0604
	0.465
	0.0758

	precip
	2127.31
	NA
	NA
	0.0102
	0.692
	0.0537
	0.465
	0.0725

	success-ag-sheep-ch_slope
	2128.62
	0.144
	5.64
	0.0271
	0.690
	0.0585
	0.473
	0.0754

	ag-avgtemp-success
	2133.50
	0.374
	6.22
	0.0487
	0.689
	0.0603
	0.472
	0.0764

	sediment-sheep-success-

ch_slope-ag
	2133.68
	0.144
	5.95
	0.0316
	0.688
	0.0606
	0.472
	0.0785

	success-sheep-sediment
	2138.38
	0.117
	2.29
	0.0468
	0.690
	0.0610
	0.467
	0.0760

	success-ag-sheep-sediment
	2142.79
	0.117
	2.64
	0.0490
	0.691
	0.0591
	0.467
	0.0777


Table 4c. Model Evaluation Results for Buffer AOI. 

	COL1
	BIC
	max

|corr|
	max

cond#
	max

p-value
	corr

(obs,pred)
	std

corr
	RMSEP
	std

RMSEP

	sheep
	2122.19
	NA
	
	0.0027
	0.691
	0.0588
	0.467
	0.0742

	precip
	2126.68
	NA
	
	0.0059
	0.690
	0.0591
	0.471
	0.0751

	area-sheep
	2130.53
	0.063
	4.93
	0.0360
	0.691
	0.0602
	0.470
	0.0763

	area-ch_slope-conifer2
	2131.85
	0.409
	8.69
	0.0051
	0.685
	0.0596
	0.476
	0.0737

	area-ch_slope-cattle
	2133.23
	0.409
	9.30
	0.0145
	0.689
	0.0618
	0.471
	0.0784

	area-conifer2
	2136.32
	0.160
	5.15
	0.0354
	0.690
	0.0574
	0.470
	0.0708

	area-cattle
	2136.60
	0.060
	6.05
	0.0380
	0.688
	0.0606
	0.471
	0.0758

	pine-precip
	2138.28
	0.284
	9.72
	0.0134
	0.692
	0.0601
	0.466
	0.0763

	area-ch_slope-conifer2-sheep
	2143.14
	0.409
	8.79
	0.0280
	0.690
	0.0592
	0.472
	0.0780

	area-conifer-pine2-ch_slope
	2149.11
	0.409
	9.67
	0.0494
	0.689
	0.0582
	0.472
	0.0736

	area-conifer-pine2
	2150.56
	0.395
	6.30
	0.0402
	0.691
	0.0583
	0.466
	0.0755


Table 4d. Definitions of the variable names used above.

	ag
	% Agriculture

	alpine
	% Alpine & Subalpine Vegetation

	alpine2
	Change in % Alpine/Subalpine Vegetation

	avgtemp
	1989 Average Temperature (° C)

	cattle
	% Cattle Grazing

	ch_slope
	Channel Gradient

	conifer
	% Mixed Conifer & Lodgepole Pine Forest

	conifer2
	change in % Mixed Conifer & Lodgepole Pine Forest

	pine
	% Ponderosa Pine

	pine2
	Change in % Ponderosa Pine

	precip
	Precipitation (mm)

	screens
	Density of Screened Diversions

	sediment
	% Sedimentary Geology

	sheep
	% Sheep Grazing

	success
	% Successional Forest

	wetlands
	% Wetland Vegetation

	wetland2
	Change in % Wetlands


Table 5a. Summary of Models for Buffer AOI.
	
	Variable
	Coeff.
	se
	df
	t
	p-value

	Model 1
	Intercept
	1.056
	0.094
	41
	11.21
	< 0.0001

	
	Sheep Grazing
	-0.0074
	0.0025
	892
	-3.00
	0.003

	Model 2
	Intercept
	1.679
	0.257
	41
	6.53
	<.0001

	
	Precipitation
	-0.0013
	0.0005
	892
	-2.76
	0.006

	Model 3
	Intercept
	1.259
	0.157
	41
	8.04
	< 0.0001

	
	Area
	-0.052
	0.022
	891
	-2.32
	0.020

	
	∆ Conifer Forest
	0.0049
	0.0023
	891
	2.11
	0.035

	Model 4
	Intercept
	1.604
	0.246
	41
	6.51
	< 0.0001

	
	Precipitation
	-0.0015
	0.0005
	891
	-3.34
	0.0009

	
	Ponderosa Pine
	0.0051
	0.0020
	891
	2.41
	0.013


Table 5b. Summary of Models for Watershed AOI.
	
	Variable
	Coeff.
	se
	df
	t
	p-value

	Model 1
	Intercept
	1.059
	0.0949
	41
	11.17
	< 0.0001

	
	∆ Alpine Veg.
	-0.042
	0.0146
	892
	-2.91
	0.004

	Model 2
	Intercept
	1.067
	0.0941
	41
	11.34
	< 0.0001

	
	Sheep Grazing
	-0.0078
	0.00239
	892
	-3.28
	0.001

	Model 3
	Intercept
	0.629
	0.171
	41
	3.67
	0.0007

	
	Cattle Grazing
	0.00496
	0.00183
	892
	2.72
	0.007

	Model 4
	Intercept
	1.853
	0.338
	41
	5.48
	< 0.0001

	
	Precipitation
	-0.0014
	0.00055
	892
	-2.57
	0.010


Table 5c. Summary of Models for HUC AOI.
	
	Variable
	Coeff.
	se
	df
	t
	p-value

	Model 1
	Intercept
	1.122
	0.106
	41
	10.63
	< 0.0001

	
	Successional Forest
	-0.348
	0.153
	892
	-2.27
	0.024

	Model 2
	Intercept
	1.087
	0.099
	41
	10.98
	< 0.0001

	
	∆ Wetlands
	-0.130
	0.055
	892
	-2.34
	0.020

	Model 3
	Intercept
	1.071
	0.095
	41
	11.23
	< 0.0001

	
	∆ Alpine Veg.
	-0.040
	0.014
	892
	-2.86
	0.004

	Model 4
	Intercept
	1.052
	0.122
	41
	8.66
	< 0.0001

	
	Successional Forest
	-0.425
	0.147
	890
	-2.90
	0.004

	
	∆ Conifer Forest
	0.0077
	0.0029
	890
	2.67
	0.008

	
	Diversion Screens
	-2.568
	1.036
	890
	-2.48
	0.013


Table 6a. Model Evaluation Results. 

	AOI
	Model
	BIC
	max

p-value
	Corr
	std

corr
	RMSPE
	std

RMSPE

	Buffer
	Cattle
	516.83
	0.0127
	0.754
	0.1038
	0.577
	0.1032

	Watershed
	Cattle
	517.52
	0.0330
	0.761
	0.0936
	0.570
	0.0977

	Watershed
	sedimentary-urban
	514.95
	0.0303
	0.756
	0.0975
	0.574
	0.1025


Table 6b. Definitions of the variable names used above.

	Cattle
	% cattle grazing

	sedimentary
	% sedimentary geology

	Urban
	% urbanization/development


Table 7. Summary of Final Models.

	
	AOI
	Variable
	Coeff.
	se
	df
	t
	p-value

	Model 1
	Buffer
	Intercept
	2.0368
	0.2563
	41
	7.95
	<.0001

	
	
	Cattle Grazing
	-0.0129
	0.0051
	201
	-2.51
	0.013

	Model 2
	Watershed
	Intercept
	2.402
	0.4276
	41
	5.62
	<.0001

	
	
	Cattle Grazing
	-0.0133
	0.00617
	201
	-2.15
	0.033

	Model 3
	Watershed
	Intercept
	0.471
	0.4417
	41
	1.07
	0.29

	
	
	Sedimentary Rock
	0.084
	0.03376
	200
	2.49
	0.014

	
	
	Urbanization
	3.090
	1.416
	200
	2.18
	0.030


Table 8. Predictor Variables Selected for 2-variable All-subsets Modeling

	Variable
	HUC AOI
	Watershed AOI
	Buffer AOI

	Area
	
	X
	X

	∆ Successional Forest
	
	X
	

	1.5% Hill Slope
	
	X
	

	Mines
	X
	X
	

	Riparian Vegetation
	
	X
	

	Roads (km)
	
	X
	X

	Sandstone
	
	X
	

	Open Water
	X
	X
	

	∆ Open Water
	X
	
	


Table 9a. Model Evaluation Results. 

	AOI
	MODEL
	BIC
	max

corr
	max

cond #
	max

p-value
	max

D > 1
	corr

(obs,pred)
	std

corr
	RMSPE
	std

RMSPE

	Watershed
	dams-ch_slope-water
	519.73
	0.461
	7.20
	0.0043
	slightly
	0.836
	0.0591
	0.323
	0.0974

	Watershed
	dams-ch_slope-water2
	519.77
	0.496
	7.44
	0.0112
	
	0.834
	0.0608
	0.324
	0.1028

	HUC
	h_slope-mines
	522.06
	0.436
	4.29
	0.0000
	
	0.833
	0.0612
	0.322
	0.1023

	Watershed
	dams-ch_slope-pine2
	523.82
	0.417
	5.65
	0.0024
	
	0.832
	0.0605
	0.326
	0.1029

	Watershed
	water-dams
	528.97
	0.240
	3.70
	0.0142
	slightly
	0.832
	0.0607
	0.325
	0.1018

	HUC
	mines-water2
	530.33
	0.252
	4.11
	0.0000
	
	0.834
	0.0639
	0.327
	0.1016

	Watershed
	alluv-mines
	531.33
	0.574
	4.76
	0.0000
	
	0.832
	0.0622
	0.327
	0.0998

	Watershed
	success2-h_slope
	531.54
	0.040
	4.90
	0.0476
	
	0.834
	0.0586
	0.323
	0.0995

	Watershed
	mines-wetlands
	532.11
	0.597
	5.19
	0.0097
	slightly
	0.836
	0.0600
	0.322
	0.1021

	Watershed
	dams-water2-success2
	532.27
	0.382
	4.57
	0.0029
	slightly
	0.831
	0.0649
	0.326
	0.1016

	Watershed
	dams-water-success2
	532.44
	0.240
	4.16
	0.0029
	
	0.830
	0.0615
	0.329
	0.0964

	Watershed
	arid_veg-water-mines
	536.82
	0.506
	5.68
	0.0034
	
	0.831
	0.0606
	0.327
	0.1021

	Buffer
	alluv-water
	552.74
	0.497
	3.61
	0.0468
	slightly
	0.833
	0.0603
	0.321
	0.0994


Table 9b. Definitions of the variable names used above.

	alluv
	% alluvium

	arid_veg
	% Grassland, Shrub-steppe, Juniper Woodland, Desert Scrub

	ch_slope
	Channel Gradient

	dams
	Dam Density

	h_slope
	% of AOI with < 1.5% hill slope

	mines
	Mine Density

	pine2
	Change in % Ponderosa Pine

	success2
	Change in % Successional Forest

	water
	% Open Water

	water2
	Change in % Open Water

	wetlands
	% Wetland Vegetation


Table 10. Summary of Final Models.

	
	AOI
	Variable
	Coeff.
	se
	df
	t
	p-value

	Model 1
	Buffer
	Intercept
	1.245
	0.335
	42
	3.72
	0.0006

	
	
	Alluvium
	0.012
	0.006
	208
	2.00
	0.047

	
	
	Open Water
	-0.103
	0.047
	208
	-2.19
	0.030

	Model 2
	Watershed
	Intercept
	0.873
	0.392
	42
	2.23
	0.031

	
	
	Dam Density
	114.73
	24.50
	207
	4.68
	< 0.0001

	
	
	Ch. Gradient
	189.01
	67.06
	207
	2.82
	0.005

	
	
	∆ Open Water
	-0.988
	0.386
	207
	-2.56
	0.011

	Model 3
	Watershed
	Intercept
	0.179
	0.258
	42
	0.69
	0.49

	
	
	Dam Density
	126.25
	23.00
	207
	5.49
	< 0.0001

	
	
	Ch. Gradient
	327.77
	59.76
	207
	5.48
	< 0.0001

	
	
	∆ Ponderosa Pine
	0.093
	0.030
	207
	3.08
	0.002

	Model 4
	Watershed
	Intercept
	0.838
	0.209
	42
	4.02
	0.0002

	
	
	Alluvium
	-0.210
	0.040
	208
	-5.22
	< 0.0001

	
	
	Mine Density
	24.44
	4.31
	208
	5.68
	< 0.0001

	Model 5
	Watershed
	Intercept
	2.021
	0.401
	42
	5.04
	< 0.0001

	
	
	∆ Successional Forest
	-0.350
	0.176
	208
	-1.99
	0.048

	
	
	Hill Slope
	-46.93
	17.85
	208
	-2.63
	0.009

	Model 6
	HUC
	Intercept
	1.29
	0.20
	42
	6.51
	< 0.0001

	
	
	Hill Slope
	-13.72
	2.34
	208
	-5.86
	< 0.0001

	
	
	Mine Density
	13.48
	2.15
	208
	6.28
	< 0.0001

	Model 7
	HUC
	Intercept
	1.11
	0.19
	42
	5.75
	< 0.0001

	
	
	Mine Density
	10.90
	2.05
	208
	5.33
	< 0.0001

	
	
	∆ Open Water
	-0.288
	0.051
	208
	-5.65
	< 0.0001


Table 11. Predictor Variables Selected for 2-variable All-subsets Modeling

	Variable
	HUC AOI
	Watershed AOI
	Buffer AOI

	Agriculture
	X
	X
	

	Alluvium
	
	
	X

	Area
	X
	X
	X

	Arid Vegetation
	X
	X
	

	∆ Arid Vegetation
	X
	
	X

	Cattle
	X
	X
	

	Channel Slope
	X
	X
	X

	∆ Clearcut
	X
	
	

	Clearcut
	X
	
	

	Conifer
	X
	X
	

	∆ Conifer
	X
	X
	X

	Dams
	X
	X
	X

	Metamorphic
	X
	X
	

	Mines
	X
	
	X

	Ponderosa Pine
	
	X
	

	∆ Ponderosa Pine
	
	X
	

	Precipitation
	
	X
	

	Riparian
	X
	X
	X

	Roads (km)
	X
	X
	X

	Sedimentary 
	
	
	X

	Open Water
	
	X
	

	∆ Open Water
	
	X
	

	∆ Wetlands
	X
	X
	

	Wetlands
	X
	X
	X


Table 12a. Model Evaluation Results for HUC AOI. 

	MODEL 
	BIC
	max

|corr|
	max

cond.#
	max 

p-value
	corr

(obs,pred)
	std

corr
	RMSEP
	std

RMSEP

	dams
	697.73
	NA
	NA
	0.0049
	0.9249
	0.0256
	0.4930
	0.0667

	ch_slope-riparian
	699.31
	0.11
	3.08
	0.0087
	0.9249
	0.0240
	0.4911
	0.0637

	ch_slope
	699.68
	NA
	NA
	0.0363
	0.9265
	0.0229
	0.4874
	0.0625

	dams-riparian
	699.83
	0.16
	2.20
	0.0401
	0.9228
	0.0256
	0.4979
	0.0691

	ag-ch_slope
	704.27
	0.28
	3.21
	0.0018
	0.9261
	0.0227
	0.4867
	0.0626

	Cattle-ch_slope
	704.79
	0.04
	3.05
	0.0401
	0.9249
	0.0246
	0.4920
	0.0657

	ch_slope-arid2-dams-alpine
	705.03
	0.51
	4.21
	0.0208
	0.9259
	0.0237
	0.4875
	0.0630

	arid2-dams
	705.42
	0.03
	1.82
	0.013
	0.9234
	0.0246
	0.4971
	0.0658

	arid2-ch_slope
	705.72
	0.15
	2.74
	0.0047
	0.9264
	0.0239
	0.4879
	0.0642

	ag-dams
	706.49
	0.06
	2.63
	0.0354
	0.9224
	0.0253
	0.5010
	0.0701

	ch_slope-conifer
	706.77
	0.31
	4.15
	0.0044
	0.9267
	0.0237
	0.4877
	0.0626

	wetlands
	706.92
	NA
	NA
	0.004
	0.9249
	0.0237
	0.4921
	0.0653

	ch_slope-arid2-dams-wild
	708.48
	0.45
	3.88
	0.0302
	0.9260
	0.0230
	0.4908
	0.0609

	conifer2
	708.56
	NA
	NA
	0.0004
	0.9230
	0.0244
	0.4961
	0.0643

	metamor
	710.47
	NA
	NA
	0.0041
	0.9238
	0.0271
	0.4933
	0.0729


Table 12b. Model Evaluation Results for Watershed AOI. 

	MODEL
	BIC
	max

|corr|
	max

cond.#
	max 

p-value
	corr

(obs,pred)
	std

corr
	RMSEP
	std

RMSEP

	ch_slope-riparian
	693.88
	0.26
	2.84
	0.0008
	0.9257
	0.0241
	0.4873
	0.0638

	dams
	696.57
	NA
	NA
	0.0071
	0.9252
	0.0240
	0.4915
	0.0633

	ag-ch_slope
	698.62
	0.43
	3.31
	0.0001
	0.9277
	0.0235
	0.4836
	0.0626

	ch_slope-riparian-alpine2
	698.92
	0.56
	4.52
	0.0266
	0.9259
	0.0228
	0.4906
	0.0633

	ch_slope
	699.68
	NA
	NA
	0.0363
	0.9267
	0.0241
	0.4869
	0.0643

	arid_veg-ch_slope
	704.14
	0.21
	3.03
	0.0026
	0.9264
	0.0237
	0.4885
	0.0636

	riparian
	706.03
	NA
	NA
	0.0388
	0.9228
	0.0283
	0.4969
	0.0774

	ch_slope-conifer
	706.64
	0.28
	7.53
	0.0083
	0.9244
	0.0234
	0.4922
	0.0637

	water
	708.06
	NA
	NA
	0.0038
	0.9244
	0.0245
	0.4918
	0.0626

	water2
	708.58
	NA
	NA
	0.0092
	0.9247
	0.0244
	0.4908
	0.0639

	metamor
	711.95
	NA
	NA
	0.0298
	0.9236
	0.0245
	0.4950
	0.0642

	arid_veg
	714.89
	NA
	NA
	0.0367
	0.9219
	0.0292
	0.4992
	0.0783


Table 12c. Model Evaluation Results for Buffer AOI. 

	MODEL


	BIC
	max

|corr|
	max

cond
	max 

p-value
	corr

(obs,pred)
	std

corr
	RMSEP
	std

RMSEP

	ch_slope-riparian
	696.37
	0.20
	3.05
	0.0005
	0.924
	0.0256
	0.4943
	0.0679

	ch_slope-riparian-success
	699.34
	0.38
	4.15
	0.0044
	0.924
	0.0254
	0.4958
	0.0680

	ch_slope
	699.68
	NA
	NA
	0.0363
	0.924
	0.0245
	0.4963
	0.0674

	ch_slope-riparian-sediment
	702.23
	0.20
	3.39
	0.0087
	0.920
	0.0341
	0.5048
	0.0881

	riparian-wetlands-success-ch_slope
	705.39
	0.38
	5.78
	0.0167
	0.922
	0.0268
	0.5010
	0.0704

	arid2-ch_slope
	705.70
	0.17
	2.69
	0.0031
	0.922
	0.0271
	0.4968
	0.0708

	ch_slope-sediment
	706.81
	0.04
	2.85
	0.0426
	0.920
	0.0317
	0.5062
	0.0859

	mines-riparian
	707.02
	0.01
	3.36
	0.0159
	0.922
	0.0269
	0.4981
	0.0701

	dams-riparian
	707.12
	0.05
	2.21
	0.0426
	0.921
	0.0308
	0.5012
	0.0802

	arid2-ch_slope-sediment
	708.80
	0.17
	3.10
	0.0010
	0.920
	0.0335
	0.5042
	0.0892

	riparian
	709.00
	NA
	NA
	0.0058
	0.924
	0.0264
	0.4937
	0.0708

	wetlands
	710.51
	NA
	NA
	0.0049
	0.922
	0.0283
	0.5010
	0.0765

	ch_slope-roads_km
	711.03
	0.02
	3.13
	0.0235
	0.924
	0.0256
	0.4940
	0.0662

	mines-riparian-success
	711.45
	0.38
	3.68
	0.0147
	0.923
	0.0266
	0.4968
	0.0710


Table 12d. Definitions of the variable names used above.

	alpine
	% Alpine & Subalpine Vegetation

	alpine2
	Change in % Alpine/Subalpine Vegetation

	arid_veg
	% Grassland, Shrub-steppe, Juniper Woodland, Desert Scrub

	arid2
	Change in % Arid Vegetation

	ag
	% Agriculture

	cattle
	% Cattle Grazing

	ch_slope
	Channel Gradient

	conifer
	% Mixed Conifer & Lodgepole Pine Forest

	conifer2
	change in % Mixed Conifer & Lodgepole Pine Forest

	dams
	Dam Density

	metamor
	% Metamorphic Geology

	mines
	Mine Density

	riparian
	% Riparian Vegetation

	roads_km
	Road Length in kilometers

	sediment
	% Sedimentary Geology

	success
	% Successional Forest

	water
	% Open Water

	water2
	Change in % Open Water

	wetland
	% Wetland Vegetation

	wild
	% Designated Wilderness


Table 13a. Summary of Final Models for the Buffer AOI.

	
	Variable
	Coeff.
	se
	df
	t
	p-value

	Model 1
	Intercept
	1.98
	0.32
	17
	6.25
	< 0.0001

	
	Channel Gradient
	-93.55
	26.74
	340
	-3.50
	0.0005

	
	Riparian Veg.
	-0.339
	0.081
	340
	-4.16
	< 0.0001

	Model 2
	Intercept
	2.54
	0.34
	16
	7.56
	< 0.0001

	
	Channel Gradient
	-106.4
	23.4
	340
	-4.54
	< 0.0001

	
	Riparian Veg.
	-0.431
	0.075
	340
	-5.74
	< 0.0001

	
	Successional Forest
	-0.150
	0.052
	340
	-2.87
	0.004

	Model 3
	Intercept
	2.01
	0.371
	16
	5.43
	< 0.0001

	
	Channel Gradient
	-88.10
	22.14
	339
	-3.98
	< 0.0001

	
	Riparian Veg.
	-0.363
	0.072
	339
	-5.07
	< 0.0001

	
	Successional Forest
	-0.183
	0.049
	339
	-3.77
	0.0002

	
	Wetlands
	0.069
	0.027
	339
	2.40
	0.017

	Model 4
	Intercept
	0.615
	0.362
	17
	1.70
	0.11

	
	Mine Density
	3.51
	1.45
	340
	2.42
	0.016

	
	Riparian Veg.
	-0.286
	0.090
	340
	-3.19
	0.002


Table 13b. Summary of Final Models for the Watershed AOI.

	
	Variable
	Coeff.
	se
	df
	t
	p-value

	Model 1
	Intercept
	1.90
	0.34
	17
	5.58
	< 0.0001

	
	Channel Gradient
	-99.49
	29.49
	340
	-3.37
	0.0008

	
	Riparian Veg.
	-4.61
	1.35
	340
	-3.42
	0.0007

	Model 2
	Intercept
	0.095
	0.368
	18
	0.26
	0.80

	
	Dam Density
	142.38
	52.58
	340
	2.71
	0.007

	Model 3
	Intercept
	2.23
	0.36
	17
	6.11
	< 0.0001

	
	Channel Gradient
	-123.27
	30.02
	340
	-4.11
	< 0.0001

	
	Agriculture
	-0.161
	0.041
	340
	-3.91
	0.0001

	Model 4
	Intercept
	1.41
	0.38
	16
	3.70
	0.002

	
	Channel Gradient
	-137.73
	31.95
	340
	-4.31
	< 0.0001

	
	Riparian Veg.
	-3.81
	1.27
	340
	-3.01
	0.003

	
	∆ Alpine Veg.
	0.142
	0.064
	340
	2.23
	0.027


Table 13c. Summary of Final Models for the HUC AOI.

	
	Variable
	Coeff.
	se
	df
	t
	p-value

	Model 1
	Intercept
	1.75
	0.35
	18
	4.95
	0.0001

	
	Channel Gradient
	-81.07
	30.74
	339
	-2.64
	0.009

	
	Riparian Veg.
	-1.06
	0.39
	339
	-2.70
	0.007

	Model 2
	Intercept
	2.10
	0.39
	17
	5.39
	< 0.0001

	
	Channel Gradient
	-98.91
	30.41
	340
	-3.25
	0.001

	
	Agriculture
	-0.041
	0.013
	340
	-3.15
	0.002

	Model 3
	Intercept
	1.58
	0.36
	17
	4.41
	0.0004

	
	Channel Gradient
	-69.60
	32.54
	340
	-2.14
	0.033

	
	Cattle Grazing
	-0.172
	0.083
	340
	-2.06
	0.040

	Model 4
	Intercept
	0.525
	0.447
	15
	1.17
	0.26

	
	Channel Gradient
	-79.23
	29.90
	340
	-2.65
	0.008

	
	∆ Arid Veg.
	0.024
	0.0096
	340
	2.55
	0.011

	
	Dam Density
	58.48
	19.58
	340
	2.99
	0.003

	
	Alpine Veg.
	0.098
	0.042
	340
	2.32
	0.021
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Figure 1. Three subbasins in the Columbia River basin where SWAM analyses have been ran for BPA.

