Table 1

	GG	GT	TT	
AA	3	4	9	
AT	2	6	0	
TT	6	0	0	
	AT	AA 3 AT 2	AA 3 4 AT 2 6	AA 3 4 9 AT 2 6 0

Table 2.

Site 218	Site 243	Frequency	-
Т	A	0.4	
G	Т	0.4	
G	А	0.2	
Т	Т	0	

Chromosome location: The location of the canine gene is unknown; the corresponding human gene maps to 17q21 (Law *et al.* 1986), or to 17q11.1-q12 (Xu *et al.* 1988).

Acknowledgement: This work was supported by a grant from the American Kennel Club.

References

Hogg D. et al. (1986) J Biol Chem **261**, 12420–7. Law M.L. et al. (1986) Cytogenet Cell Genet **42**, 202–7. Xu W. et al. (1988) Proc Natl Acad Sci USA **85**, 8563–7.

Correspondence: G S Johnson

© 1995 Blackwell Science Ltd

A polymorphism in intron D of the chinook salmon growth hormone 2 gene

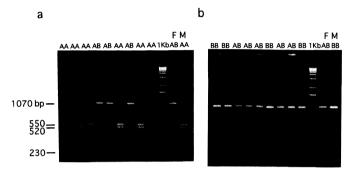
L K Park, P Moran, D A Dightman

Coastal Zone and Estuarine Studies Division, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, WA 98112, USA

Accepted 27 March 1995

Source/description: Locus-specific primers were developed using published gene and cDNA sequences of growth hormone 1 and growth hormone 2 from Salmo salar, Oncorhynchus mykiss, and Oncorhynchus keta (Agellon & Chen 1988; Agellon et al. 1988; Johansen et al. 1989; Sekine et al. 1989).

Primer sequences:


Forward primer (GH2ex-4): 5'-CAG CCT AAT GGT CAG AAA CT-3' Reverse primer (GH2ex-5a): 5'-CGT AGT TCC TCC TGA CGT TG-3' Expected product size: approximately 1300 base pairs.

PCR/RFLP conditions: 30 µl reactions consisting of: 0·2–0·5 µg total genomic DNA; 0·1µM each primer; 0·2µM dNTPs; 3 mM MgCl₂; 50 mM KCl; 10 mM Tris-HCl; 0·1% Triton; 0·3 U Taq polymerase. Amplification was performed using a profile of 1 min at 94°C, 2 min at 52°C, and 1 min at 72°C for 40 cycles, with a final extension of 10 min at 72°C. Restrictions were performed according to manufacturer's instructions and the resulting fragments were separated by electrophoresis on a 1·5% agarose gel, and visualized using ethidum bromide and UV light.

Polymorphism: RFLPs were detected in DNA samples from four populations of chinook salmon in the Columbia River basin (northwestern USA) using the endonuclease *Dra*I. Allele *A* contains two *Dra*I sites, which yield fragments of approximately 550, 520, and 230 bp. Allele *B* contains only a single *Dra*I site and yields two fragments of approximately 1070 and 230 bp. Restriction with the

enzymes *Bam*HI, *Eco*RI, *Pst*I, and *Hae*III revealed no polymorphisms. Restriction with the enzyme *Bsr*GI revealed a polymorphism linked to the *Dra*I polymorphism and, therefore, yielded no additional information.

Mendelian inheritance: Segregation of the alleles was examined in two heterozygote-homozygote crosses. A sample of 15 offspring of undetermined sex from each of the two crosses (see Fig. 1 and Table 1) showed codominant segregation of the two alleles. No significant departures from expected values were observed ($\chi^2 = 0.6$ for each cross), although the power of the test was limited by the small sample size.

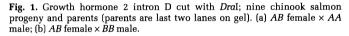


 Table 1. Genotype frequencies for the growth hormone 2, intron D polymorphism in offspring of two separate crosses of chinook salmon from Abernathy Hatchery, WA, USA

Female × Male	Offspring			
	AA	AB	BB	Total
AB×AA	6	9	0	15
$AB \times BB$	0	6	9	15

Allele frequency: The frequencies of RFLPs were determined in a total of 68 individuals from four populations in the Columbia River drainage (Table 2).

Table 2. Frequency of growth hormone 2, intron D DraI polymorphism in four populations of chinook salmon from the Columbia River drainage (north-western USA)

	Genotype frequency			Allele frequency		
Location	AA	AB	BB	Total	Α	В
Lostine River, OR	15	5	0	20	0.88	0.12
Minam River, OR	17	3	0	20	0.93	0.07
Carson Hatchery, WA	10	4	0	14	0.86	0.14
Abernathy Hatchery, WA	8	5	1	14	0.75	0.25

Chromosomal location: Unknown, autosomal.

References

Agellon L.B. & Chen T.T. (1988) Mol Reprod Dev 1, 11-7.

Agellon L.B. et al. (1988) PNAS 85, 5136-40.

Sekine S. et al. (1989) Biochim Biophys Acta 1009, 117–20. Johansen B. et al. (1989) Gene 77, 317–24.

Correspondence: L K Park © 1995 Blackwell Science Ltd