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USING MORPHOMETRIC AND MERISTIC CHARACTERS FOR 
IDENTIFYING STOCKS OF FISH 
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2725 Montlake Boulevard East 
Seattle, Washington 98112 

INTRODUCTION 

An animal species may be defined as groups of actually or 
potentially interbreeding natural populations, which are 
reproductively isolated from other such groups (Mayr 1963). 
Genetic or phenetic homogeneity among these groups over the 
entire distribution of the species is rarely observed due to 
heterogeneity and discontinuities in the environment or, simply, 
due to isolation by distance. Fish species are no exception to 
this generality and are usually subdivided into more or less 
distinctive groups which, in the case of commercially important 
species, are commonly referred to as stocks. I define stock as a 
self-sustaining group of individuals sharing a common and 
unrestricted gene pool. In terms of population genetics, a s8tock 
is a panmictic subunit of a species that is generally in Hardy- 
Weinberg equilibrium. Although random factors may influence 
geographic variability within a species, we generally assume that 
stock variability is important to the species for continued 
successful reproduction and adaptation. Therefore fish biologists 
have long sought to define stocks of fish, to understand the 
spatial and temporal dynamics of stock differentiation, and to 
apply these data to conserving and managing the species (see 
Canadian Journal of Fisheries and Aquatic Science, Volume 38(12)). 

Identification of stocks of fish has long been the province 
of morphologists. Large data sets have been, and continue to1 be, 
collected for a diverse array of commercially important fish (see 
Table 1). But since the 1960s, there has been a surge of 
technical advances in the field of molecular biology (Ayala 1976; 
Nei and Koehn 1983) and the use of molecular characters in 
fisheries biology has increased dramatically (Ryman and Utter 
1987). Theoretically, molecular data--from DNA to proteins--are 
superior for stock identification because of their direct and 
simple genetic basis. This accounts for the fact that three of 
the- fou; papers in this symposium discussing character sets for 
identifying stocks of fish are based on molecular data. Still, in 
this flurry of molecular work, there have been parallel advances 
in the concepts and techniques of viewing, collecting, and 
analyzing morphological data. We may see a resurgence of 
morphological studies (pers. cornm., J. Felsenstein, University of 



Washington, Seattle, WA). Given the large number of molecular 
studies of fish, the best recourse for the morpholosist is to 
continue to study morphological variability but-to h e w  it in 
light of its relationship with other molecular character sets. A 
better understanding of~morphological characters will inevitably 
result. As Lewontin (1984) observed, "It often happens that the 
observed morphological differentiation is clear and statistically 
significant, while the differences in gene frequency are less 
powerful in discriminating populations and species." 

My objective is to present some of the newest developments 
in the collection and use of morphological data for the 
identification of stocks of fish. I will focus on three areas: 
1) types of characters, 2) data collection procedures, and 3) 
statistical analyses. Illustrations of these areas will be 
provided using dita from my studies of milkfish (Chanos chanos) 
and chinook salmon (Oncorhynchus tshawytscha). I will also discuss 
several ways in which morphological data may be applied in concert 
with electrophoretic characters in manasement of fish stocks. 
This work is restricted to morphometric and meristic characters. 

TYPES OF MORPHOLOGICAL CHARACTERS 

A biologist studying morphological variation will make counts 
of elements in or along specific body parts and measure distances 
between distinguishing landmarks. In other words, he/she may 
collect meristic data and morphometric data. Standardized tech- 
niques for investigating these characters are described in Hubbs 
and Lagler (1947). 

The most frequently used meristic characters are scales and 
fin rays. Scale counts described by Hubbs and Lagler (1947) 
include lateral-line scales, scales above and scales below the 
lateral line, circumferential scale count at the caudal peduncle 
and anterior of the dorsal fin, cheek scales, and scales before 
the dorsal fin. Counts of fin rays are taken for the median and 
paired fins. Other characters that- are frequently used are counts 
of vertebrae, branchiostegal rays, pyloric caeca, gill rakers, and 
teeth. 

For over 30 years, most morphometric investigations have 
based the selection of characters on the set of measurements 
described by Hubbs and Lagler (1947). These traditional 
morphometric characters measure length, depth, and width of fish 
shape, primarily in the head and tail regions. For example, in my 
study of milkfish, I collected data for the 16 characters depicted 
in Figure 1. These characters are not unlike those used in every 
study of morphometric variability listed in Table 1 (e.g., see 
Figure 1, Meng and Stocker 1984). 



Recently, the use of these traditional morphometric 
characters has been questioned (Humphries et al. 1981; Strauss and 
Bookstein 1982; Bookstein et al. 1985). These workers argue that 
the conventional-type characters concentrate along the anterior- 
posterior body axis and in the head and caudal region and 
therefore produce uneven and biased areal coverage of the entire 
body form (see Strauss and Bookstein (1982) for details). 
Localized changes in body shape may go undetected, they argue, 
amidst the long distance measures across regions of the fish body. 
Their suggestion is to cover the shape or outline of a fish 
uniformly with a network of distance measures. This crisscross 
pattern along the body form is called a truss network (Humphries 
et al. 1981). Theoretically, this systematic characterization of 
the geometry of a fish form will increase the likelihood of 
extracting morphometric differences with biological meaning within 
and between species. 

To establish a truss network pattern, morphological landmarks 
are identified along the outline (or surface) of a fish. Good 
landmarks are not identified by extremities, like the narrowest 
portion of the caudal peduncle, but by anatomical features. 
"Anatomical landmarks are true homologous points identified by 
some consistent feature of the local m~rphology~~ (Strauss and 
Bookstein 1982). For example, I used the 12 landmarks illustrated 
in Figure 2. There are numerous uses of conventional landmarks in 
a truss network (e.g., the origin and insertion of fins). I also 
found good results with points like #1 (Figure 2), the 
posteriormost point of the maxillary, at the closest point to the 
body on a line perpendicular to the horizontal axis of the 
specimen; point # 4 ,  posterior aspect of the neurocranium; and 
points #11 and #12, anterior attachment of the membrane from the 
caudal fin. Ideally, an equal number of dorsal and ventral 
landmarks are used. Six distance measures connect a set of two 
dorsal and two ventral landmarks, producing four peripheral 
distances and two diagonals. A set of six measurements for four 
landmarks is considered a cell. Five cells have been constructed 
across the form in Figure 2. In this case, with 12 landmarks, 
five cells are constructed yielding 26 distance measurements. 
Cells and truss characters may be referenced according to the 
scheme of Strauss and Bookstein (1982). For example, the distance 
between landmarks 1 and 2 is truss character 1-2 in cell 1, the 
distance between landmarks 9 and 11 is 9-11 in cell 5, and so on. 

Will truss characters help in resolving stock differences? 
Humphries et al. (1981) and Strauss and Bookstein (1982) present 
several examples illustrating how truss network characters are 
better for discriminating between two species than are 
conventional characters. I have seen similar results working with 
chinook salmon. Namely, I collected juvenile chinook salmon in 
three locations and took 11 conventional and 33 truss measurements 



on each individual (Figure 3). The results of a discriminant 
function analysis of the two data sets are presented in Figure 4. 
A scatterplot of scores from the analysis of conventional measures 
indicated minor between-sample differences (Figure 4A). In 
contrast, the analysis of the truss characters indicated there was 
essentially complete discrimination among the three samples 
(Figure 4B). The details of a similar comparison of groups of 
Pacific salmon have been reported (Winans 1984). 

An apparent drawback to truss characters is making the larger 
number of measurements crisscrossing over the fish form--a caliper 
nightmare. New developments in electronic devices discussed 
below, however, have solved this problem. 

COLLECTION OF DATA 

"If you want to count scales or gill rakers... 
go ahead." (Anon.) 

I1Dividers or a dial-reading caliper should be 
used for measurements. (Hubbs and Lagler 1947) 

Many meristic counts can be made by eye, depending on the 
specimen size and the character. In some cases for certain scale 
or ray counts, dissecting microscopes are necessary. In other 
cases, characters like vertebrae are counted from negatives of x- 
ray photographs. Frequently, a red dye may help identify special 
characters, like mandibular pores in salmonids (pers. corn., R. 
Leary, U. Montana, Missoula, MT). I am aware of one attempt to 
automate the collection of meristic data. McAllister and Planck 
(1981) describe an automatic counting probe, which can be attached 
to a computer or data-recording device. Their description: 

"The automatic counter consists of a pen-like 
touch-sensitive probe, whose spring-loaded tip adds 
one to the count each time it is lightly pressed 
against a series of images or objects. Countable 
items miglk include fish scales, vertebrae on 
radiographs, or fishes in photos of schools. When 
the last item is counted, the SEND button at the 
top of the probe is pressed, transmitting the count 
to the computer and resetting the display counter 
to zero ready for the next count." 

My reservations, without actually trying out the device, concern 
the mechanical sensitivity and facility of using the device on 
small elements such as gill rakers viewed under a microscope. 
Experimenting with this type of data-collection device may 
eventually lead to a versatile and time saving tool. 



The collection of morphometric measurements can still involve 
hand-held calipers, meter sticks, and/or a measuring board. Once 
the data are taken'in this fashion, they are keypunched 
into a computer for analysis. Several new electronic devices with 
computer orientation are available which speed up the process and 
eliminate some of the errors involved in collecting morphometric 
data. I will discuss in detail the use of a digitizing board 
because of my experience with it, and will briefly mention several 
other new devices. 

Distances between morphological features on a fish can 
quickly and precisely be determined in the laboratory with an X-Y 
coordinate digitizing pad. The researcher first records the 
positions of certain morphological features or landmarks around 
the outline of a specimen using a set of X-Y axes on a digitizing 
pad. Distances between landmarks are then calculated from the X-Y 
data. I have described a 3-step process (Winans 1984) for 
collecting distance measures in this fashion. The following is a 
summary of the procedure. 

1. Positioning 
Specimens are placed on water-resistant paper, 

and body posture and fin positions are teased into 
a natural position. Positioning of specimens in 
this fashion is a precise process, as evidenced by 
low measurement error (see Winans 1984, Table 1). 

2. Pinning 
Distinctive and homologous landmarks are 

selected around the outline of the fish form. Each 
landmark is indicated and recorded by making a hole 
with a dissecting needle in the water resistant 
paper alongside its respective location. Data such 
as specimen number, body weight, and color are 
recorded alongside each specimen and added to the 
computer file when the landmark holes for that 
specimen are digitized. 

3. Digitizing 
After the landmark information from a set of 

specimens has been recorded (pinned), the paper is 
placed on an X-Y coordinate digitizing pad to 
establish a reference set of X and Y axes to view 
interlandmark distances. The X-Y coordinate values 
(+0.01 mm) for positions of the landmarks are 
indicated and recorded on a computer by depressing 
an attached digitizing stylus into each hole. 
Landmarks are digitized in the same sequence for 
each fish. Specimen identifying data are added via 
a computer terminal/keyboard and also stored with 
the digitizing information. The Euclidean or 



morphometric distances between pairs of landmarks 
are then calculated by computer (using the 
Pythagorean theorem.) 

This digitizing procedure speeds up and adds flexibility to 
the process of collecting morphometric data. As an example, I pin 
80-100 specimens in an 8-hour day and later can digitize and 
calculate morphometric distances for 100 fish in about 90 minutes. 
This is much faster than measuring specimens with hand-held 
calipers. And importantly, the faster data-collection process 
facilitates collecting synoptic data (e.g., morphological and 
electrophoretic data) from the same specimens. 

The use of a digitizing pad leads to procedural and 
analytical flexibility. Recording X-Y data for relevant landmarks 
on a fish outline provides the morphometrician with the capability 
of selecting traits for analysis without the need to remeasure 
specimens. For example, both a truss network and a conventional 
data set can be calculated from the same set of digitized 
landmarks and compared. Since the landmarks are essentially in a 
2-dimensional plane, statistical adjustments for folded or twisted 
fish are not necessary (see unfolding statistics in Strauss and 
Bookstein 1982). Also, because of the 2-dimensional nature of 
this setup, digitizing fish shapes from photographs is possible 
with a high degree of precision (unpublished data). 

Several other electronic devices should be noted. McAllister 
and Planck (1981) describe automatic calipers which are designed 
to transmit measurements to a computer, pocket calculator, or 
data-recording device. Although the selected calipers will limit 
the size of fish that can be measured, the procedure is accurate 
and fast. With a battery power supply, the setup becomes portable 
for field work. 

Recent advances have been made in image processing that might 
also be applicable to the study of body outlines of fish (Ferson 
et al. 1985 and references therein). Basically, the procedure 
involves placing an object on a screen and tracing its silhouette 
by digitizing. The resultant closed curve is analyzed by fitting 
a set of mathematical functions (e.g., elliptic Fourier approxima- 
tions). The Fourier coefficients are then analyzed with conven- 
tional multivariate statistics to view between-group differences. 
Notably, this image processing is done without homologous 
landmarks. Could it work with fish? Ferson et al. (1985) write, 

I1Because the present elliptic Fourier methods do not 
need continuous traces for input and work for any 
sequence of two-dimensional points, when landmark data 
are endowed with a natural or arbitrary order, elliptic 
Fourier description should be adequate to capture 
variation in relative landmark positions.It 



This procedure is currently being tested on fish (pers. comm., S. 
Ferson, State Univ. New York, Stony Brook, NY). Some authors 
question the usefulness and biological meaning of describing 
closed shapes with Fourier descriptors (Bookstein et al. 1982). 
As Ehrlich et al. (1983) point out, there is need for more 
empirical studies where the efficacy and interpretability of one 
technique can be compared with another. Image processing may 
prove to be a powerful technique for describing shapes in some 
instances. 

STATISTICAL ANALYSES 

There is a basic difference between meristic and morphometric 
characters. Meristic characters are discrete, and can assume only 

' integer values. In contrast, morphometric characters are 
continuous and assume the values of real numbers. Therefore, 
meristic and morphometric characters should not be considered in 
the same statistical analysis (Seal 1964). Moreover, the data 
should be transformed differently. It is frequently observed that 
measurement means and variances are correlated, the largest 
characters like fork length or lateral-line scales having the 
largest associated variances within their respective data sets. 
To decrease the effect of this correlation, the raw data are 
transformed. Sokal and Rohlf (1981) recommend transforming 
meristic characters to square roots and a logl0 -transformation 
of morphometric data. The latter transformation preserves 
allometric relationships among the characters (Jolicoeur 1963). 
For a multivariate analysis, such as principal component analysis, 
an alternative solution for merisitic characters is to use a 
correlation matrix instead of a variance-covariance matrix. 

With the collection of larse sets of morpholosical data, how 
should the data be analyzed; univariateiy, bivariately, or 
multivariately? The answer depends on how we view morphological 
adaptation and evolution. I concur with Sokal and  inke el's (1.963) 
multivariate perspective: 

"Geographic variation is not likely to be due to 
adaptation of a few characters to a single environmen- 
tal variable, but is doubtless a multidimensional 
process involving the adaptation of many characters to 
a variety of interdependent environmental factors...I1. 

Thus, a correct understanding of morphological variation is 
multivariate (Gould and Johnston 1972). We ought to strive to 
examine thoroughly the patterns of variance and covariance among 
all characters in a data set using multivariate statistics. 



Multivariate analyses of morphometric data sets usually 
identify size and shape differences among individuals and groups. 
In compliance with current morphometric work, size and shape are 
considered factors--linear combinations of variables. Size is 
defined here not as a single character, but a factor that can 
predict any distance measurement (Humphries et al. 1981). Shape 
is defined as a specific relationship among characters as 
described by specific correlations, , - or 0 ,  between the 
characters--a measure of geometry. For most stock identification 
work, shape discriminators are desired, as we can usually sort 
fish to size quite readily just by eye. Unfortunately, shape 
measures are not independent of size because of allometric 
relationships, and size-free shape estimators are difficult to 
obtain. This problem is discussed in detail in Humphries et al. 
(1981). I will present an overview of their arguments and 
recommendations. 

There are three general approaches for removal of size 
influences in analyses of shape: ratios, regressions, and 
multivariate analysis. Simply stated, it is believed that the 
division of a character by a measure of size, say, fork length, 
will produce a size-free measure of that character. Similarly, if 
a measure is regressed against say, fork length, replacing the 
original measurement by its residual after regression will produce 
a size-free measurement (Thorpe 1976). The principal argument of 
Humphries et al. (1981) is that these ratios or regressions only 
remove the effect of the one variable, e.g., fork length, from the 
measurement. The third possibility for producing size-free shape 
components is through multivariate analyses such as discriminant 
function and principal component analyses. Humphries et a1 (1981) 
reject discriminant function analysis as a descriptive tool 
because of the difficulty in interpreting the coefficients in a 
biological context. For example, the interpretation of shape 
components is based on the coefficients in the discriminant 
function vectors. However, as Humphries et al. (1981) point out: 

I1From within a set of correlated characters only the 
variable with the highest F-statistic will be weighted 
heavily. Within that set, variables that do not 
contribute added discrimnation will have low 
coefficients even though they contain nearly as much 
information about shape as the variable with the high 
F-statistic. 

Campbell and Atchley (1981) and Williams (1983) likewise question 
the interpretability and stability of discriminant function 
coefficients. The recommendation of Humphries et al. (1981) is to 
use principal component analysis to view multivariable data sets. 
In principal component analysis individuals are not assigned a 
priori to groups, thus permitting "group differences to be 



disco~ered.~~ Moreover, principal component coefficients are 
essentially the covariance of the measurement on the component 
axis, and are thus amenable to biological interpretation. Before 
describing their new approach to making size-free shape 
components, I will briefly describe principal component analysis. 

Principal component analysis computes a set of uncorrelated 
composite variables called principal components (hereafter PCs) 
from a variance-covariance (or correlation) matrix (Dunn and 
Everitt 1982). The first principal component (referred to as PC 
I) explains the most variance in the data set. Geometrically, PC 
I is thought to lie parallel with the largest axis in the 
hyperdimensional cloud of data (see Campbell and Atchley 1981; 
Green 1976). PC I1 is independent of PC I, that is, it lies 
perpendicular to the axis of PC I, and explains the second largest 
component of variation in the data set. PC I11 is independent of 
the other PCs and explains the third most variation, and so on for 
the other PCs. Each PC is a linear combination of the variables 
and is defined by a vector (an eigenvector) of coefficients and an 
eigenvalue. The coefficients are essentially a measure of 
covariance of the character on that PC. The eigenvalue is a 
measure of variability explained by a particular PC; the sum of 
the eigenvalues equals the total variability in a data set. Since 
on any component only a few characters have large coefficients, 
the biological interpretation of a component is based on the 
magnitude and signs of these so-called important characters. 
Examples of this are given below. 

What about size-related problems? PC I characteristically 
has + signed coefficients for all measurements and is interpreted 
as a size vector. Samples and individuals sort by overall size on 
PC I. Subsequent components describe specific covariability 
relations or shape, as variables have + or - signed coefficients 
or are zero. Frequently, though, residual size effects are 
observed in these shape components. For example, in a plot of PC 
scores for a particular component, say, PC I1 onto the PC I axis, 
the ellipse of points for a sample is at a diagonal to the PC I 
axis instead of parallel to it. In other words, values of PC I1 
are not independent of the size axis, PC I. Humphries et al. 
(1981) describe and illustrate a multivariable method called shear 
analysis for removing size from PC scores and vectors. It is a 
modified principal component analysis and uses scores from a 
second principal component analysis of centered (mean-adjusted) 
data by group to remove size influences (see p. 300, Humphries et 
al. 1981, for the six steps in shearing data; or Bookstein et al. 
1985). 

To illustrate visually how shearing works, I will use results 
from an analysis of morphometric data from chinook salmon. 
Judging from the eigenvectors (data not'presented here), PC I was 
a size-related axis and PC I1 was a shape axis. A plot of scores 



on PC I and PC I1 is presented in Figure 5A. Clearly the scatter 
of points for each of the two samples is oriented at a diagonal 
with PC I. Namely, the larger the fish, the smaller the PC I1 
value. Following a shear analysis, the orientation of the scatter 
of points in each group is parallel with PC I (Figure 5B). Shape 
variability along the PC I1 axis is now independent of size. Any 
component other than PC I, whether from a merisitic or morphomet- 
ric data set, can be sheared in this way to eliminate size 
effects. 

Presumably, we have arrived at a set of techniques which view 
character variance and covariance in large data sets to produce 
multivariate size and size-free shape descriptors. In conjunction 
with shear snalysis, principal component analysis provides a set 
of rules, defined by shape eigenvectors, that define new shape 
variables. Scores on these shape components can then be evaluated 
for significant between-group differences in routine analyses, 
such as analysis of variance or multiple range tests. 

MODEL FOR STUDYING TEMPORAL STABILITY 

One of the principal problems in the use of morphological 
characters for stock identification is that morphological 
phenotypes are labile to environmental variability (discussed 
below). Therefore, before implementing size-free shape components 
in stock identification programs, we must examine the temporal 
stability of the multivariate relationships. It is important to 
know if between-year variability is less than between-stock 
variability for a given shape discriminator. I have outlined in 
Figure 6 a simple model for examining temporal stability in these 
characters. It requires a minimum of two years of data 
collection. It is applicable to either meristic or morphometric 
data, although in the figure and text I refer to the set of 
important characters in a component as a shape descriptor. For 
two years of data, there are two steps: Step 1 is a search for a 
size-free combination of morphological variables that is a good 
stock discriminator, and Step 2 is to determine the temporal 
stability of the discriminator and the respective differences 
among locales. 

In the first year, data are collected from specimens from 
various locales, preferably while the fish are segregated onto 
spawning locations. A principal component analysis produces a 
size factor, PC I. Subsequent components are sheared (when 
necessary) to produce size-free components. Analyses are 
conducted on the scores from the sheared components to test if 
significant between-locale (stock) differences exist in the data 
and in what pattern. 



Step two is essentially a repeat of Step one, except that the 
researcher tests the temporal nature of the results first revealed 
in year 1. Namely, he/she can first examine the correlation of 
eigenvectors, i.e., the correlation of the coefficients of sheared 
PC I1 from years 1 and 2; and secondly, examine the pattern of 
mean values by locale from Year 1 and 2. Nonsignificant differ- 
ences between years for both of these tests add a great deal. of 
confidence in the use of the respective PCs as stock discrimina- 
tors. As illustrated in the bottom portion of Figure 6, the data 
from the two years may be pooled, and the principal component 
scores on the sheared axis (or axes) examined in a 2-way analysis 
of variance. In this analysis, the researcher can quantify 
differences in shape due to geography (between stocks) and to time 
(between years within locales). The most useful results with 
respect to stock identification are when stock shape values do not 
vary significantly from year to year. This does not mean that: the 
morphological variability is primarily genetically determined, 
only that the influence of yearly environmental changes is less 
than the geographic differences. Note that this model is applied 
separately for meristic and morphometric characters. I will 
demonstrate the use of the model in the following example. 

Example 1. Morphometric variation in juvenile chinook salmon. 

I am interested in evaluating morphometric variability among 
stocks of juvenile chinook salmon for use in identifying the 
origin of fish while in mixtures in an estuarine or nearshore 
marine environment. In 1982 and 1983 fish were collected in 
estuaries and rivers along the Oregon coast (Figure 7 A ) .  They 
were frozen and taken to the laboratory for electrophoretic and 
morphometric evaluation. For simplicity, I report here the 
results of analyses on the four most geographically separated 
samples: Nehalem, Tillamook, Coquille, and Sixes. 

Descriptive statistics of the samples are given in Table 2. 
Twenty-six truss network measurements were made on each fish using 
20 digitized landmarks. The first principal component, PC I, 
explained 88% of the total variance and was a size-related 
component. Coefficients were roughly equal and positively signed 
for all variables on this component (Table 3). PC I1 and I11 
explained 3 and 2% of the total variance, respectively. Other 
components explained less than 1% of the variance and are not 
considered further. The second and third components were sheared, 
producing the size-free shape components, sheared PC I1 (SPC 11) 
and sheared PC I11 (SPC 111). Important characters in both of 
these components were located in the tail, involving landmarks 
9-12. An analysis of variance of SPC I1 and I11 scores indicated 
significant between-locale differences. Results of a Duncan's 
multiple range test of PC scores are displayed in Table 4. Fish 



from Location #4 in the south (Sixes River) were significantly 
different from the other three locations on both SPC I1 and SPC 
111. In accord with Step 1 of the model (Figure 6), tail shape 
differences exist among four samples collected in 1982. 

The 1983 samples, described in Table 2, were analyzed in the 
same fashion. Again, PC I was a size-related component and 
explained 89% of the total variance. Components I1 and I11 each 
explained 2% of the variation; they were sheared to produce size- 
free components. The correspondence between the eigenvectors of 
1982 and 1983 was high, for example, characters 9-11 and 10-12 had 
the largest coefficients for SPC I1 and SPC 111, respectively, in 
both years. The correlation of coefficients for 1982 and 1983 was 
0.86 for SPC I1 and 0.76 for SPC 111. However, the 
correspondence of the sample means on these two components between 
1982 and 1983 was low, as shown in Table 4. In fact, the pattern 
of geographic variation was reversed from that seen in 1982. 
Although the three northern samples were still not significantly 
different at SPC 11, the Sixes River sample now had the highest 
value of SPC I1 in 1983. 

The 1982 and 1983 data were pooled for a principal component 
analysis to assess further geographic variability in light of 
annual variability. The eigenvectors were similar to those from 
the independent analyses (Table 3). The results of a multiple 
range test in Table 5 highlight the heterogeneous nature of the 
results seen in Table 4. For instance, Sample #3 (Coquille River) 
had the largest SPC I1 value in 1982 and the smallest in 1983. 
The results of a 2-way analysis of variance confirmed these 
findings. For scores on SPC I1 and 111, the amount of between- 
year variance, as measured by F-values, was from 3 to 30 times 
greater than the between-locale variance. Clearly there is no 
temporal stability to the pattern of geographic variation in these 
samples. 

A consideration of some preliminary growth studies of chinook 
salmon aids the interpretation of these results. The early life 
history of Pacific salmon is marked by a smoltification period 
during which considerable physiological, biochemical, and 
behavioral changes occur as the young fish prepare for the 
transition from freshwater to seawater (Folmar and Dickhoff 1980). 
I have studied body shape changes during early development in 
chinook salmon reared in hatcheries and reported a dramatic change 
in the shape of the caudal peduncle presumably associated with 
smoltification (Winans 1984). The pattern of change seen in a 
sample of hatchery fish along the SPC I1 axis is illustrated in 
Figure 8A.  The important characters associated with these changes 
are illustrated in Figure 9A. Interestingly enough, the same 
characters are contrasted in the SPC I1 component in the above 



study of wild chinook salmon (Figure 9B). For a comparison, mean 
SPC I1 scores for the eight Oregon samples are plotted in Figure 
8B. A similar pattern of shape change with growth is seen. 
Apparently, discrimination among these samples is more a function 
of the degree of smoltification than true geographic 
differentiation. 

With respect to the model in Figure 6, my conclusions are 
that in Step 1, tail shape characters were identified and inter- 
locality differences noted, and in Step 2, tail shape variability 
was again detected, but yearly variability was greater than 
between-locality differences. Other studies indicate that shape 
differences are related to ontogenetic differences. 

I present the following 
principal component analysis 
identifying fish to group. 

study to demonstrate the 
to describe a simple 

use of a 
rule for 

Example 2: Meristic and morphometric variability in milkfish. 

I have investigated morphological and electrophoretic 
variability in milkfish from 15 locations in the Pacific Ocean 
(Fiqure 7 ~ i .  One of the major observations is that fish from the 
Phiiippines differed electro~h~reticall~ and morphometrically from 
neighboring samples along the equatorial Pacific Ocean (Winans 
1980; ~inans 1985). 1n-this example, I use the two southern 
Philippine samples P1 and P2 and the nearest sample from the 
equatorial Pacific island group, Palau (PAL), to demonstrate a 
particular use of principal component analysis. 

I examined 6 meristic characters and 19 traditional 
morphometric characters on each fish. A principal component 
analysis of the meristic data transformed to square roots 
indicated extensive overlap among the samples and was not 
considered suitable for stock identification (see Figure 5, Winans 
1985). A principal component analysis of log-transformed 
morphometric data revealed size differences along PC I, and 
considerable variation along the sheared PC I1 axis. There was a 
basic dichotomy in SPC I1 scores, viz., Philippine samples, 
differed from the non-Philippine samples, with one Philippine 
sample, Tahiti, and Christmas Island samples adding heterogeneity 
to this general pattern (Figure 10). Although a shape change 
associated with size was apparent in Hawaii, the magnitude of this 
change was not greater than, or overlapped with, the SPC I1 
dichotomy discussed here. The difference between the Palau sample 
and the two samples from the Philippines is illustrated in a 
histogram of the SPC I1 scores (Figure 11A). The two groups do 
not overlap on this character axis. 

Six characters had relatively large coefficients for SPC I1 
(Table 6). Several head characters had large, positively signed 



coefficients (orbital, snout, and premaxilla lengths), contrasted 
with three tail characters with negatively signed coefficients 
(caudal depth, body depth at anus, and length of anal fin base). 
My biological interpretation of this shape component based on the 
eigenvector is that the Philippine samples have smaller heads and 
larger tails in comparison to the Palau sample. For practical 
reasons, I wanted to see if I could go one step further than just 
identifying the important characters on a vector. I wanted to 
know whether this smaller set of important measurements by itself 
could be used to discriminate these samples. To test this, new 
SPC I1 scores were calculated for each fish using data from only 
these six variables. As an example of the calculations, the 
calculation of a SPC I1 score for fish i is: 

SPC IIi = snout lengthi (0.317) + orbital lengthi (0.397) 

+ caudal depthi (-0.350) + body depthi (-0.515) 

+ anal fin basei (-0.253) + premaxillary lengthi (0.258). 
(Note that these values will differ from Winans (1985) because 
overall character means were not subtracted first from each 
variable, i.e., absolute values differ but the relative values do 
not.) The SPC I1 scores, calculated from these six variables are 
plotted in Figure 11B. The difference between the two Philippine 
samples and Palau sample did not decrease, but in fact, increased 
slightly. I conclude that a principal component analysis of 19 
morphometric characters identifies shape differences associated 
with the head and tail regions of the fish. There is no loss of 
discriminatory power when only the six most important characters 
are used to calculate a SPC I1 score. 

DISCUSSION 

One of the most important recent developments in evaluating 
morphometric variability in fish is the truss network character 
set. It clearly is an objective procedure for uniformly covering 
the outline of a fish with distance measures for shape analysis. 
First, albeit few, applications of this technique indicate truss 
characterization of shape is more sensitive for detecting 
differences among species and, as is relevant here, among stocks. 
It could be argued that enhanced discrimination with truss data is 
due simply to the increase in absolute number of characters 
presented for analyzing. Whereas n characters will generally 
provide better discrimination than I1-1 characters (Speilman and 
Smouse 1976), I think in this case shape discrimination also 
increases due to the addition of more information about local 
changes in body shape. The generality of this technique will be 
tested as more traditional and truss character sets are compared. 



Considerable advances have been made recently in the 
development of electronic equipment suitable for morphological 
investigations of fish. My focus here has been on digitizing the 
X-Y coordinates of morphological landmarks using an X-Y digitizing 
board. The digitizing procedure is fast, produces data sets 
amenable to the calculation of various types of distance measures, 
and it is precise. I routinely collect morphometric and 
electrophoretic data from the same individuals. I can quickly 
thaw specimens (frozen to preserve proteins), identify the 
relevant landmark positions by pinning, and then refreeze the 
specimens at a rate of 80-100 specimens per 8 hours. Landmark 
information for the 80-100 fish can then be digitized in about 90 
minutes. Importantly, because of the fast pinning process, tissue 
preparations from the refrozen specimens can later be subjected to 
electrophoresis without any detectable change or deterioration in 
electrophoretic banding patterns. Moreover, measurement error in 
this process is small, less than 0.5 mm for most measurements 
(Winans 1984). A greater use of digitizing equipment in this area 
of research will eventually lead to an increase in the quality and 
quantity of information that can be gleaned from fish shapes. 

Other technical developments also look promising. Technical 
advances in the field of image analysis will be followed closely 
by morphometricians (Rohlf and Ferson 1983). When a structure or 
outline is free of landmarks, e.g., bones or otoliths, perhaps the 
best approach will be to apply image analysis in conjunction with 
Fourier descriptors. But further investigations into the 
application of Fourier analysis of closed shapes are encouraged to 
resolve any questions and problems associated with this 
potentially powerful technique (see Bookstein et al. 1982; Ehrlich 
et al. 1983). Developments in the field of ultrasound digitizing, 
including 3-dimensional viewers, are also being examined as t:ools 
for fish morphometrics (pers. corn., A. Johnson, NMFS, Panama 
City, Florida). As a greater variety of techniques for col1ec:ting 
and viewing morphological data become available, I foresee a need 
for more comparative studies to determine which techniques will 
yield the best, most reliable discrimination. As Ehrlich et al. 
(1983) state: '"There is no reason to expect that one 
morphological technique will yield equally good information for 
all investigators, or for all species. 

Principal component analysis was presented here as a useful 
multivariate statistical procedure for viewing multicharacter 
variability within and among groups of fish. Principal components 
describe the major axes of character variability in simple 
character space; typically the first few components contain most 
of the variability in the data set. Clearly, understanding 
variation at a few composite PC variates is easier than trying to 
understand greater then n patterns of variability at n variables. 
The relative contribution of a variable to a PC- variate is 
determined by the relative size of its PC coefficient. Thus, PC 



analysis can be used to identify the important variables. If a 
large number of variables are examined in a pilot project, the 
number of variables which must be measured or counted in a 
subsequent, large scale study may be reduced. This was 
demonstrated in a simple case here for milkfish (Example 2). By 
interpreting the PC results in Table 6 as I did, I eliminated 
about 2/3 of the morphometric characters without a loss of stock 
discrimination (Figure 11). 

Determining the number of PC components for analysis can be 
subj ective . Frequently, components are dismissed if their 
associated eigenvalues are less than 1.0 (Tatsuoka 1971). In 
Example 1, I dismissed components after PC 111, because the amount 
of variation explained in each of these components was 1% or less. 
To reduce this source of subjectivity, Gibson et al. (1984) have 
applied the jackknife procedure to principal component analysis. 
This technique provides estimates of variance of the coefficients 
in the eigenvectors and of the eigenvalues. This is done by 
iteratively removing data for one individual and redoing the 
component analysis. They demonstrate how it is used to identify 
stable, interpretable coefficients, and feel that this approach 
@Ishould restrain a general tendency to over-interpret.@! The 
jackknife procedure, as a method to improve the statistical 
robustness of principal component analysis in stock 
identification, should be explored further. 

The primary frustration in the use of morphological 
variation for stock identification is that the variability is not 
simply or directly inherited. It is generally assumed that 
substantial, but usually unknown, amounts of environmental 
influence may be involved with patterns of morphological 
variability. Some meristic characters are quite heritable (e.g., 
Leary et al. 1985a reviewed in Kirpichnikov 1981), but we know 
almost nothing of the genetic basis for the multivariate meristic 
or morhometric characters as defined by principal component 
analysis. The genetic basis of, say, head length for milkfish is 
unknown at the present time, not to mention the genetic basis for 
the composite variable SPC I1 discussed here. It is encouraging 
that recent work with rodents has shown that multivariate shape 
characters defined by multivariate analyses have a substantial 
heritable component (Atchley et al. 1981; Leamy and Atchley 1984; 
and Leamy and Thorpe 1984). Obtaining comparable estimates for 
most fishes is technically unrealistic now. It is more practical 
to evaluate the temporal stability of multivariate morphological 
components to determine their reliability as practical stock 
descriptors. 

A model is presented for examining temporal stability of 
morphological variation among smaples (Figure 6). It is an 
intuitively simple program for analyzing morphological data that 
has been collected for a minimum of two years. The model is based 



on a multivariate analysis to describe multicharacter complexes as 
defined by specific eigenvectors. Each fish has a single value on 
each component. Therefore, it is the eigenvectors and their 
respective component scores which require evaluation. Suggested 
analyses are correlation studies of the eigenvectors and analysis 
of variance of the component scores. Although a few workers have 
collected two years of data in a study, none have completed any of 
the informative analyses presented here (e.g., Todd et al. 1981; 
Riddell et al. 1981). Studying quantitative characters (like fish 
shape) "is a difficult and somewhat slippery affairM (Lewontin 
1974). Sound sampling and statistical analyses as suggested here 
will give satisfactory evaluation of morphological characters. 
Further understanding of the forces that direct morpholog.ica1 
characters, be they environmental or genetic, may be gained in 
multicharacter studies of changes in the environment and genetic 
structure. 

Since the advent of various molecular techniques in the 
1 9 6 0 ~ ~  considerable expertise and extensive data bases have 
developed with respect to population genetics of fish. Provided 
with readily available genotypes, fish biologists interested in 
morphological variation can gain new and valuable perspectives of 
morphological variability. Information of the association of 
morphological phenotypes and biochemical genotypes may be useful 
in fish management and conservation programs (see Soule 1980). I 
present two examples, one at the individual level and one at the 
stock level, illustrating the complementary use of morphological 
and molecular (in this case electrophoretic) characters. 

Asymmetr of bilateral meristic characters. Bilateral 
characters i: organisms are usually not perfectly symmetrical. 
The number of rays in the left pectoral fin of a fish may not 
equal the number of rays in the right pectoral fin. Numerous 
studies of fish have looked at levels of asymmetry (e.g., Felley 
1980; Graham and Felley 1985; Angus 1982). The findings of Leary 
et al. (1984) are perhaps most pertinent to the management of fish 
stocks. Leary and his colleagues have examined electrophoretic 
variability (measured as heterozygosity) and asymmetry in several 
salmonids. Their general conclusion is that there is a negative 
relationship between heterozygosity and asymmetry betiween 
individuals within a population. That is, individuals with the 
most heterozygous loci are likely to have the fewest number of 
asymmetrical characters. Moreover, they have noted that obviously 
deformed rainbow and cutthroat trout are more asymmetrical in 
their bilateral characters than are normal individuals (see Figure 
1, Leary et al. 1984). They conclude that asymmetry may be 
negatively correlated with biological fitness. Concerning 
measurements of asymmetry of meristic characters, they write 
(Leary et al. 1985b) : 



"We envision the most valuable use of this 
technique to be the monitoring of populations through 
time. A progressive increase in average asymmetry would 
indicate a loss of genetic variation through inbreeding 
or an increase in environmental stress. The ideal 
monitoring program would combine an examination of 
allele frequency changes at isozyme loci and changes in 
fluctuating asymmetry. Such a program would be able to 
both detect the loss of genetic variation and 
simultaneously evaluate the effe,cts of such loss on the 
population. " 

As a potential tool for use in fisheries, as Leary et al. 
envision, it is important to determine the relationship, if any, 
between bilateral meristic asymmetry and electrophoretic variation 
in other commercially important fish. 

Characters -- used in mixed stock fisheries. A common practice 
in fisheries science is to estimate proportions of various stocks 
in a mixed-stock fishery, when samples and baseline data are 
available from all contributing stocks (Milner et al. 1985). An 
important issue in problems of mixed stock fisheries is the selec- 
tion of characters. Ideally characters are discrete, expressed 
independently of environmental variation, temporally stable, and 
cost effective. Allele frequency differences at protein-coding 
loci detected by protein gel electrophoresis generally fulfill 
these requirements (e.g., Grant et al. 1980; Beacham et al. 1985a 
and 1985b). 

The work of Fournier and his colleagues has expanded the 
statistical model for mixed stock fisheries in two important ways. 
First, they have extended the model to include the use of several 
types of continuous and/or discrete characters simultaneously 
(Fournier et al. 1984). Conceivably the model can accept 
principal component scores of morphological data that are shown to 
be temporally stable. Furthermore, Fournier and his colleagues 
are working on another version of the model which may also 
accommodate so-called nonstationary characters (pers. corn., C. 
Woods, Fisheries and Oceans, Nanaimo, Canada). Nonstationary 
characters are characters that vary from year to year, and in one 
year, may or may not be helpful discriminators, and/or are 
characters which can not be measured for a database, and their 
stock specificity is unknown. In the proposed mixed fisheries 
model, each iterative step of the maximum likelihood analysis 
makes estimates of the stock proportions and the proportions of 
the nonstationary characters in the contributing stocks. The 
latter estimates are then reapplied to the next stock estimates. 
If nonstationary characters vary sufficiently among stocks, their 
inclusion will help stock estimates, otherwise, nonstationary 
characters will not affect the process. This means then that 



characters such as meristics and morphometrics, as well as scale 
patterns, parasites and egg size will only positively affect 
stock estimates. The concept of this model epitomizes the use of 
multicharacter data for solving a fisheries problem. 

In summary, I have presented some of the recent developments 
associated with collecting and applying morphological data in 
identifying and managing stocks of fish. It has been observed 
that many of the disciplines in biology that once were the 
exclusive domain of morphology have been assumed and, in some 
instances, taken over by molecular-oriented technology (e.g., 
Lewin 1985). Therefore, I have concluded this paper by presenting 
examples of how combinations of morphological data and molecular 
data ( e l  electrophoretic) can be potentially more useful than 
either character set alone in both genetic conservation programs 
and management programs. We have a lot to learn about fish 
genotypes and phenotypes; examining the association of different 
character sets at the individual and population levels is an 
important first step in this field of research. I feel we should 
continue our research of morphological variability in fish, 
especially in coordination with research of other character sets, 
testing and using as many new ideas and technologies as seems 
necessary and appropriate. 

LITERATURE CITED 

ANGUS, R.A. 
1982. Quantifying fluctuating asymmetry: not all methods are 
equivalent. Growth 46:337-342. 

ATCHLEY, W.R., J.J. RUTLEDGE, and D.E. COWLEY. 
1981. Genetic components of size and shape. 11. Multivariate 
covariance patterns in the rat and mouse skull. Evolution 
35: 1037-1055. 

AYALA, F.J. 
1976. Molecular evolution. Sinauer Assoc., Sunderland Assoc., 
Sunderland, MA, 277p. 

BEACKAM, T.D. 
1985. Variation in number of vertebrae and sill rakers of 
sockeye salmon, Oncorhynchus nerka, in-~orth America. 
Environ. Biol. Fish. 14:97-105. 

BEACHAM, T.D:, R.E. WITHLER, and A.P. GOULD. 
1985a. Blochemical genetic stock identification of chum salmon 

(Oncorhynchus keta) in southern British Columbia. Can. J. 
Fish. Aquat. Sci. 42:437-448. 



BEACHAM, T.D., R.E. WITHLER, and A.P. GOULD. 
1985b. Biochemical genetic stock identification of pink salmon 

(Oncorhynchus gorbuscha) in southern British Columbia and 
Puget Sound. Can. J. Fish. Aquat. Sci. 42:1474-1483. 

BOOKSTEIN, F.L., R.E. STRAUSS, J.M. HUMPHRIES, B. CHERNOFF, R.L. 
ELDER, and G.R. SMITH. 
1982. A comment upon the uses of Fourier methods in 
systematics. Syst. 2001. 31:85-92. 

BOOKSTEIN, F.L., B. CHERNOFF, R.L. ELDER, J.M. HUMPHRIES, G.R. 
SMITH, and R.E. STRAUSS. 

1985. Morphometrics in evolutionary biology. Spec. :Publ. 
15, Acad. Nat. Sci. Phila., 277 p. 

CAMPBELL, N.A., and W.R. ATCHLEY. 
1981. The geometry of canonical variate analysis. Syst. Zool. 
30:268-280. 

CASSELMAN, J.M., J.J.COLLINS, E.J. CROSSMAN, P.E. IHSSEN, and G.R. 
SPANGLER. 
1981. Lake whitefish (Coregonus clupeaformis) stocks of the 
Ontario waters of Lake Huron. Can. J. Fish. Aquat. Sci. 

COPEMAN. D.G. 
1977. Population differences in rainbow smelt, Osmerus moxdax: 
multivariate analysis of mensural and meristic data. J. 
Fish. Res. Board can. 34: 1220-1229. 

DUNN, G., and B.S. EVERITT. 
1982. An introduction to mathematical taxonomy. Cambridge 
Univ. Press, Cambridge, MA, 152 p. 

EHRLICH, R., R.B. PHARR, and N. HEALY-WILLIAMS. 
1983. Comments on the validity of Fourier descriptors in 
systematics: a reply to Bookstein et al. Syst. Zool. 
32:202-206. 

FELLEY , J. 
1980. Analysis for morphology and asymmetry in bluegill 
sunfish (Lepomis macrochirus) in the southeastern United 
States. Copeia 1980:18-29. 

FERSON, S., F.J. ROHLF, and R.K. KOEHN. 
1985. Measuring shape variation of two-dimensional outlines. 
Syst. 2001. 34: 59-68. 



FOLMAR, L.C., and W.W. DICKHOFF. 
1980. The parr-smolt transformation (smoltification) and 
seawater adaption in salmonids. Aquaculture 21:l-37. 

FOURNIER, D.A:, T.D. BEACHAM, B.E. RIDDELL, and C.A. BUSACK. 
1984. Estimating stock composition in mixed stock fisheries 
using morphometric, meristic, and electrophoretic 
characteristics. Can. J. Fish. Aquat. Sci. 41:400-408. 

GABRIEL, W.L.! W.C. LEGGETT, J.E. CARSCADDEN, and B.D. GLEBE. 
1976. Orlgin and characteristics of llfall-runll American shad 

(Alosa sapidissima) from the St. John River, New Brunswick. 
J. Fish. Res. Board Can. 33:1764-1770. 

GIBSON, A.R., A.J. BAKER, and A. MOEED. 
1984. Morphometric variation in introduced populations of the 
common myna (Acridotheres tristis) : an appiication of the 
jackknife to principal component analysis. Syst. 2001. 

GOULD, S.J., and R.F. JOHNSTON. 
1972. Geographic variation. Annu. Rev. Ecol. Syst. 3:457-,498. 

GRAHAM, J.H., and J.D. FELLEY. 
1985. Genomic coadaption and developmental stability within 
introgressed populations of Enneacanthus qloriosus and - E. 
obesus (Pisces, Centrarchidae). Evolution 39:104-114. 

GRANT, W.S., G.B. MILNER, P. KRASNOWSKI, and F.M. UTTER. 
1980. Use of biochemical genetic variants for identification 
of sockeye salmon (Oncorhynchus nerka) stocks in Cook Inlet, 
Alaska. Can. J. Fish. Aquat. Sci. 37:1236-1247. 

GREEN, P.E. (ed.) 
1976. Mathematical tools for applied multivariate analysis. 
Academic Press, N.Y., 376 p. 

HJORT, R.C., and C.B. SCHRECK. 
1982. Phenotypic differences among stocks of hatchery and wild 
coho salmon, Oncorhynchus kisutch, in Oregon, Washington, and 
California. Fish. Bull. U.S., 80:105-119. 

HUBBS, C.L., and K.F. LAGLER. 
1947. Fishes of the Great Lakes Region. Cranbrook Institute 
of Science, Bull. 26, 186 p. 



KLTMPHRIES, J.M., F.L. BOOKSTEIN, B. CHERNOFF, G.R. SMITH, R.L. 
ELDER, and S.G. POSS. 
1981. Multivariate discrimination by shape in relation to 
size. Syst. Zool. 30:291-308. 

IHSSEN, P.E., D.O. EVANS, W.J. CHRISTIE, J.A. RECKAHN, and R.L. 
DesJARDINE. 
1981. Life history, morphology, and electrophoretic 
characteristics of five allopatric stocks of lake whitefish 
(Coregonus clupeaformis) in the Great Lakes region. Can. J. 
Fish. Aquat. Sci. 38:1790-1807. 

JOLICOEUR, P. 
1963. The multivariate generalization of the allometry 
equation. Biometrics 19:497-499. 

KIRPICHNIKOV, V.S. 
1981. Genetic basis of fish selection. Springer-Verlag, N.Y., 
430 p. 

LEAMY. L., and W.R. ATCHLEY. 
1984. . Morphornetric integration in the rat (Rattus sp.) 
scapula. J. Zool. (Lond.) 202:43-56. 

LEAMY, L., and R.S. THORPE. 
1984. ' Morphometric studies in inbred and hybrid house mice. 
Heterosis, homeostasis, and heritability of size and shape. - 
Biol. J. Linn. Soc. 22:233-242. 

- 

LEARY, R.F., F.W. ALLENDORF, and K.L. KNUDSEN. 
1984. Superior developmental stability of heterozygotes at 
enzyme loci in salmonid fishes. Am. Nat. 124:540-551. 

LEARY, R.F., F.W. ALLENDORF, and K.L. KNUDSEN. 
1985a. Inheritance of meristic variation and the evolution of 
developmental stability in rainbow trout. Evolution 39:308- 
314. 

LEARY, R.F., F.W. ALLENDORF, and K.L. KNUDSEN. 
1985b. Developmental instability as an indicator of reduced 
genetic variation in hatchery trout. Trans. Am. Fish. Soc. 
114:230-235. 

LEWIN, R. 
1985. Molecules vs. morphology: of mice and men. Science 
229:743-745. 

LEWONTIN Re C 
1974. The genetic basis of evolutionary change. Columbia 
Univ. Press, N.Y., 346 p. 



LEWONTIN, R. C. 
1984. ~etecting population differences in quantitative 
characters as opposed to gene frequencies. Am. Nat. 123~115- 
124. 

MAYR, E. 
1963. Animal species and evolution. Belknap Press of Ha~rvard 
Univ. Press, Cambridge, MA, 797 p. 

McALLISTER, D.E., and R.J. PLANCK. 
1981. capturing fish measurements and counts with calipers and 
probe interfaced with a computer or pocket calculator. Can. 
J. Fish. Aquat. Sci. 38:466-470. 

McGLADE, J., and H. MacCRIMMON. 
1979. Taxonomic congruence in three populations of Quebec 
brook trout, Salvelinus fontinalis (Mitchill). Can. J. 2:ool. 
57: 1998-2009. 

MENG, H.J., and M. STOCKER. 
1984. An evaluation of morphometrics and meristics for stock 
separation of Pacific herring (Clupea harengus pallasi). - 
Can. J. Fish. Aquat. Sci. 41:414-422. 

MILNER, G.B., D.J. TEEL, F.M. UTTER, and G.A. WINANS. 
1985. A senetic method of stock identification in mixed 
populatioGs of Pacific salmon, Oncorhynchus spp. Mar. F'ish. 
Rev. 47:l-8. 

NEI, M., and R.K. KOEHN. 
1983. Evolution of genes and proteins. Sinauer Assoc., 
Sunderland, MA, 380 p. 

RIDDELL, B.E., W.C. LEGGETT, and R.L. SAUNDERS. 
1981. Evidence of adaptive polygenic variation between two 
populations of Atlantic salmon (Salmo salar) native to 
tributaries of the S.W. Miramachi River, N. B. Can. J. F'ish. 
Aquat. Sci. 38:321-333. 

ROHLF, F.J., and S. FERSON. 
1983. Image analysis. In Felsenstein, J. (editor), Numerical 
taxonomy. NATO AS1 sexes GI Ecol. Sci., No. 1. Springer- 
Verlag, N.Y., 655 p. 

RYMAN, N., and F.M. UTTER. 
1987. Population genetics and fisheries management. Univ. 
Washington Press, Seattle, 425 p. 

SEAL, H. 
1964. Multivariate statistical analysis for biologists. 
Wiley, N.Y., 207 p. 



SHARP, J.C., K.W. ABLE, W.C. LEGGETT, and J.E. CARSCADDEN. 
1978. Utility of meristic and morphometric characters for 

identification of capelin (Mallotus villosus) stocks in 
Canadian Atlantic waters. J. Fish. Res. Board Can. 35:124- 
130. 

SOKAL, R.R., and R.C. RINKEL 
1963. ~eographic variation of alate Pemphigus opuli- 
transversus in Eastern North America. Univ. Kans. Sci? Bull. 
44:467-507. 

SOKAL, R.R., and F.J. ROHLF. 
1981. Biometry. W.H. Freeman, San Francisco, CA., 859 p. 

SOULE, M.E. 
1980. Thresholds for survival: maintainins fitness and 
evolutionary potential. In Soule, M. E. , and B.A. Wilcox 
(editors), Conservation biology: an evolutionary-ecological 
perspective, p. 151-169. Sinauer Assoc., Sunderlend, MA. 

SPEILMAN. R.S.. and P.E. SMOUSE. 
1976. . ~ u l f  ivariate classification of human populations. I. 
Allocation of Yanomama Indians to villages. Am. J. Hum. 
Genet. 28:317-331. 

STRAUSS, R.E., and F.L. BOOKSTEIN. 
1982. The truss: body form reconstruction in morphometrics. 
Syst. Zool. 31:113-135. 

TATSUOKA, M.M. 
1971. Multivariate analysis: techniques for educational and 
psychological research. Wiley and Sons, N.Y., 310 p. 

THORPE, R.S. 
1976. Biometric analysis of geographic variation and racial 
affinities. Biol. Rev. 51:407-452. 

TODD, T.N., G.R. SMITH, and L.E. CABLE. 
1981. Environmental and genetic contributions to morphological 
differentiation in ciscoes (Coregoninae) of the Great Lakes. 
Can. J. Fish. Aquat. Sci. 38559-67. 

WILK, S.J., W.G. SMITH, D.E. RALPH, and J. SIBUNKA. 
1980. Population structure of summer flounder between New York 
and Florida based on linear discriminant analysis. Trans. 
Am. Fish. Soc. 109:265-271. 

WILLIAMS, B. K. 
1983. Some observations on the use of discriminant analysis in 
ecology. Ecology 64:1283-1291. 



WINANS, G.A. 
1980. Geographic variation in the milkfish, Chanos chanos,. I. 

Biochemical evidence. Evolution 34:558-574. 

WINANS, G.A. 
1984. Multivariate morphometric variability in Pacific salmon: 
technical demonstration. Can. J. Fish. Aquat. Sci. 41:1150- 
1159. 

WINANS, G.A. 
1985. Geographic variation in the milkf ish, Chanos cha,nos . 

11. Multivariate morphological evidence. Copeia 1985:890- 



Table 1. Representative morphological studies of stock structure in 
c m e r  cia1 fishes. 

FRESrnATER 
Bluegill Felley 1980 

Brmk trout =lade and MacCrirranon 1979 

Lake whitefish 

DIA-S 
Atlantic salmon 

Pacific salmon 

Casselman et dl. 1981 
Ihssen et al. 1981 

Riddell et al. 1981 

Beachan 1985 
Hjort and ~chreck 1982 
Winans 1984 

Shad (meristics only) Gabriel et al. 1976 

PllARINE 
Herring Meng and Stocker 1984 

Mil kf i sh Winans 1985 

Capel i n Sharp et al. 1978 

F1 ounder Wilk et al. 1980 

Table 2. Descriptive statistics of juvenile chinook salmon collected j.n 
August-September of 1982 and 1983. Simple locations illustrated 
in Figure 7. 

1982 1983 
Sample Fork 1-0 Sample Fork length 0 
size . . mean maximum s l z e  . . 

L 

4. Sixes 50 82 96 112 2 5 92 114 126 



Table 3. Variable coefficients on principal canpDnents I through 111. 
Cunpnents I1 and I11 were sheared by method in Humphries et al. 
(1981) to produce size independent ampnents. Coefficients are 
X 100. Refer to Figure 2 for characters. 

PC - -L 
Pooled Pooled Pooled 

ter 1982 1983 82 & 83 1982 1903 82 & 83 1982 1983 & 83 

% of total 
variance 
explained 88 89 88 3 2 3 2 2 2 



Table 4. Results of Duncan's Multiple Range Test of sheared FC scores of 
chinook salmon. Solid horizontal lines indicate samples which 
are not s ignif icant ly different. Component scores were 
calculated from two independent principal component a ~ l y s e s  of 
1982 and 1983 data. From north t o  south, sample codes are 1. = 
Nehalem, 2 = Tillamook, 3 = Coquille, and 4 = Sixes. Mean 
component scores (X 10,000) are presented below sample aodes. 

Sheared 
PC 11 

Sheared 
PC 111 

Table 5. Results of Duncan's Multiple Range Test of sheared PC scores of 
chinook salmon. Solid horizontal lines indicate samples which 
are  not s ignif icant ly different.  Component scores were 
ca lcu la ted  from a p r i n c i p a l  component analysis of the 
covariance matrix of p l e d  data from 1982 and 1983. PC scores 
were sheared by method of Humphries e t  dl. (1981). From north 
to  south, sample codes are  1 = Nehalem, 2 = Tillamook, 3 = 
Coquille, and 4 = Sixes; collection dates are 1982 (= 82) and 
1983 (= 83) .  

1982 + 1983 data 

Sheared FC I1 

- 2-83 4-83 2-82 1-82 3-82 

Sheared PC 111 



Table  6.  V a r i a b l e  c o e f f i c i e n t s  on p r i n c i p a l  components I and I1 
from an a n a l y s i s  of  morphometric c h a r a c t e r s  i n  m i l k f i s h .  
PC I1 was a d j u s t e d  o r  shea red  by a lgo r i t hm i n  Humph:ries 
e t  a l .  (1981). 

Morphometric c h a r a c t e r  

Fork l e n g t h  

Length snout -ana l  f i n  o r i g i n  

Length snou t -pe lv i c  f i n  o r i g i n  

Length snou t -pec to ra l  f i n  o r i g i n  

Length snout -dorsa l  f i n  o r i g i n  

Head l e n g t h  

Snout l e n g t h  

P o s t o r b i t a l  l e n g t h  

O r b i t a l  l e n g t h  

Caudal dep th  

Body d e p t h  a t  anus 

Length d o r s a l  f i n  base  

Length a n a l  f i n  base  

Length p e c t o r a l  f i n  base  

P e c t o r a l  f i n  l e n g t h  

Head wid th  

Nares wid th  

Bony i n t e r o r b i t a l  width  

P remax i l l a  l eng th  

PC I' Sheared  PC II 

0.222 -0.131 

0.222 -0.132 

% of t o t a l  v a r i a n c e  



r c 2 L E N A  1 
SALEN 

rDBASE 11 

Figure 1. Example of conventional morphometric characters in 
milkfish. Descriptions are given in Table 6. 



Figure 2. Example of truss network characters. Morphological 
landmarks are numbered and morphornetric distances 
between landmarks are dashed lines. 

CONVENTIONAL 

- - - - - _ _  - - - _ _ _  

NETWUHK / 

Figure 3. Truss network and conventional characters for chinook 
salmon. 
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0 Cowlitz, W A  

Discriminant function 1 

0 Cowlitz. W A  

Discriminant function 1 

Figure 4. Results of discriminant function analyses of chinook 
salmon. Analyses are based on conventional 
measurements (A) or truss network characters (B) 
illustrated in Figure 3. 



Principal component I 

Principal component I 
.- 

f i g u r e  5. Example of t h e  e f f e c t s  of s h e a r  a n a l y s i s  on two samples 
of chinook salmon. S c a t t e r  o f  p o i n t s  on t h e  f i r s t  P C  
axes  b e f o r e  ( A )  and a f t e r  (B)  a  s h e a r  a n a l y s i s  
(Bookste in  e t  a l .  1985)  . 



YEAR 1 
DATA I 

\ 

7 PCA EIGENVECTOR ANOVA 
"SHAPE " LOCALES 

YEAR 2 
DATA 

Figure 6. Model for examining temporal stability of morphological 
variability. PCA = principal component analysis. XNOVA 
= analysis of variance. 

m 
a U 

PC A EIGENVECTOR 

POOLED 
DATA 

I 

L 
r PCA L EIGENVECTOR 

"SHAPE" LOCALES,Y RS 



L. O R E G O N  

F i g u r e  7 .  Sampling l o c a t i o n s .  A .  Chinook salmon sampled al-ong 
t h e  c o a s t  of Oregon. B. M i l k f i s h  c o l l e c t e d  from 1 5  
l o c a t i o n s  i n  t h e  P a c i f i c  Ocean. 



HATCHERY 

Fork length (mm) 

COASTAL POPULATIONS 
OF OREGON 

Sixes 

a 
Coquille 

1982 
Tillamook 1983 

n 

Nehalem 

Nehalem 0 

0 Coquille 

Fork length (rnrn) - .  

Figure 8. Mean values per sample of chinook salmon for fork 
length and sheared PC 11. Details of the study of 
chinook salmon from Garrison Springs State Salmon 
Hatchery, Fort Steilacoom, WA, are given in Winans 
(1984). 
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GARRISON SPRINGS 
SALMON HATCHERY: SPC I I  

COASTAL POPULATIONS 
OF OREGON: SPC II 

Figure 9. Important c h a r a c t e r s  on SPC 11 axis .  The a s t e r i s k  
i n d i c a t e s  t h e  mos t  h e a v i l y - w e i g h t e d  c h a r a c t e r .  
N e g a t i v e l y  s i g n e d  c h a r a c t e r s  have dashed  l i n e s ;  
posit ively signed characters have so l id  l ines .  

Figure 10. Morphometric s i m i l a r i t y  of m i l k f i s h  samples. S o l i d  
c i r c l e s  i n d i c a t e  a p o s i t i v e  SPC 11 value  and l i n e d  
c i r c l e s  i n d i c a t e  a  nega t ive  SPC 11 value (see Winans 
1985) . 



0 
-0.31 5 -0.345 -0.375 -0.405 -0.435 -0.465 -0.495 -0.525 -0.555 -0.585 

Sheared PC I I scores 

19 VARIABLES 

6 VARlABLES 

-0.090 -0.120 -0.150 -0.180 -0.21 0 -0.240 -0.270 -0.300 -0.330 -0.360 

Sheared PC I I scores 

Figure 11. Frequency histogram of SPC 11 values. SPC I1 values 
were calculated with 19 morphometric variables (A) and 
with the 6 most important variables (B). Samples P1 
and P2 are from the Philippines (see Figure 7B). 


