Relative Survival of Subyearling Chinook Salmon That Have Passed Bonneville Dam Via the Spillway or Second Powerhouse Turbines or Bypass System: Adult Recoveries Through 1991

> by Lyle G. Gilbreath, Earl M. Dawley, Richard D. Ledgerwood, Paul J. Bentley, and Stephen J. Grabowski

> > January 1993

RELATIVE SURVIVAL OF SUBYEARLING CHINOOK SALMON THAT HAVE PASSED BONNEVILLE DAM VIA THE SPILLWAY OR SECOND POWERHOUSE TURBINES OR BYPASS SYSTEM: ADULT RECOVERIES THROUGH 1991

A

A

A

by

Lyle G. Gilbreath Earl M. Dawley Richard D. Ledgerwood Paul J. Bentley and Stephen J. Grabowski

Funded by

U.S. Army Corps of Engineers Contract E96910013

and

Coastal Zone and Estuarine Studies Division Northwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 2725 Montlake Boulevard East Seattle, Washington 98112-2097

January 1993

CONTENTS

	Page
INTRODUCTION	1
ADULT RECOVERIES	4
1987 Releases	5
1988 Releases	8
1989 Releases	12
1990 Releases	14
CONCLUSIONS	16
ACKNOWLEDGMENTS	17
REFERENCES	18
APPENDIXES	19-26

A

9

1

R

3

A

A

A

~

(

INTRODUCTION

Ŕ

A

A

During the summers of 1987-1990, differentially marked upriver bright stock (URB) juvenile fall chinook salmon (<u>Oncorhynchus tshawytscha</u>) were released simultaneously through a turbine and the bypass system at Bonneville Dam Second Powerhouse (Fig. 1). Additional releases were made 1) into the tailrace at the downstream edge of the turbine boil, 2) about 2 km downstream from the dam, and 3) through the spillway. However, none of these release sites were used in all 4 years. Each year, about 2 million fish were released. For about 2 months after release, juvenile salmon were seined in the Columbia River estuary (at Jones Beach), 157 km downstream from Bonneville Dam. Recovery percentages from seining were used to estimate short-term comparative passage survival for fish groups sent through the various passage routes.

Estuarine recovery percentages of juvenile fish provided startling evidence concerning relative survival among groups through all 4 years of study. Recovery percentage of bypass-released fish was low relative to other release groups, but was variable, ranging from 0.44 to 0.80% (Table 1). In the first 2 years, recovery percentages for bypass-released groups were significantly less (P < 0.05) than for turbine-released groups; mean differences were 10.8% in 1987 and 13.6% in 1988. In the last 2 years, recovery percentages for bypass-released groups remained less than for turbine-released groups, but neither difference was statistically significant (3.3% in 1989 and 2.5% in 1990). However, the combined data from all 4 years indicated a significant difference in recovery percentages, with 7.6% less for bypass-released groups than for turbine-released groups (P < 0.05). For 3 years of data, recovery percentages for bypass-released groups averaged 14.1, 7.3, and 3.6% less than for tailrace-released groups. Combined data showed an 8.3% lower recovery for bypass groups, indicating a significant difference in relative survival compared with tailrace-released groups. Relative survival for groups

Figure 1.--Schematic of Bonneville Dam and vicinity showing release locations for subyearling chinook salmon during 1987-90 studies.

Treatment	1987	1988	1989	1990	Averag
		Recovery perc	centage		
Bypass	0.5764	0.4376	0.8007	0.5577 (0.5106) ^ь	
Upper turbine	0.6402	0.5024	0.8298	nt°	
Mid-level turbine	0.6528	0.5104	0.8256	0.5721	
Tailrace	nt	0.5095	0.8637	0.5686 (0.5299) ^b	
Downstream	0.5567 ^d	0.5690	0.9061	nt	
Spillway	nt	nt	0.9604	nt	
	Percentage	difference from	mid-level turbi	ne-released grou	ıps'
Upper turbine	-1.9	-1.6	0.5	nt	-1.0
	Percentag	e difference from	combined turb	ine-released gro	ups ^f
Bypass	-10.8*	-13.6*	-3.3	-2.5 ^b	-7.6*
	Percen	tage difference fi	rom tailrace-rel	eased groups ^s	
Bypass	Percen nt	tage difference fi -14.1*	rom tailrace-rel -7.3	eased groups ^s -3.6	-8.3*
Bypass Combined turbine	nt nt	tage difference fi -14.1* -0.6	rom tailrace-rel -7.3 -4.2	eased groups ^s -3.6 0.6	-8.3* -1.4
Bypass Combined turbine	Percen nt nt Percentag	tage difference fi -14.1* -0.6 re difference from	rom tailrace-rel -7.3 -4.2 a downstream-r	eased groups ^s -3.6 0.6 eleased groups	-8.3* -1.4
Bypass Combined turbine Tailrace	<u>Percen</u> nt nt <u>Percentag</u> nt	tage difference fi -14.1* -0.6 <u>re difference from</u> -10.5*	rom tailrace-rel -7.3 -4.2 a downstream-r -4.7	eased groups ^s -3.6 0.6 eleased groups nt	-8.3* -1.4 -7.6*

Table 1.--Summary of juvenile recovery percentages and percentage differences among groups, Bonneville Dam passage survival study, 1987-1990.

A

A

(3)

æ

bypass to tailrace release groups, shown in parentheses.

c nt = not tested.

đ The downstream release in 1987 was made at the shoreline, whereas all other releases were in mid-river.

* Percentage difference from indicated group = [(Treatment% - indicated group%) \div indicated group%] x 100.

^f Average of turbine groups released at the ceiling and at mid-depth of the intake.

^g Tailrace release site was at the downstream side of turbine discharge boil, directly into or 46 m upstream from the bypass discharge plume.

* Significant at $\alpha = 0.05$.

passing through the Bonneville Dam Second Powerhouse tailrace appeared to be poor. Recovery percentages for tailrace-released groups were significantly different (7.6% lower) than for downstream-released groups. Relative survival for spillway-released groups was evaluated only in 1989. The recovery percentage for spillway-released groups was not significantly different from that of downstream-released groups. Details of fish releases and juvenile recoveries are presented in Ledgerwood et al. (1990, 1991).

Coded-wire tag (CWT) recovery data for immatures and adults (hereafter termed adults) emanating from fish groups released through the 4 years of study will be used to estimate long-term relative survival of treatment groups. CWT returns to National Marine Fisheries Service provide the greatest number of data points and are the basis for comparing treatment groups for each release-year. CWT recovery data, collated by Pacific States Marine Fisheries Commission (PSMFC) as of 19 May 1992, were the basis for examining the geographical distributions and comparing recovery percentages to similar fish groups released by other fisheries agencies. Treatment groups with the highest annual recovery percentage as juveniles were selected to represent the Bonneville survival study in those comparisons.

ADULT RECOVERIES

Adult fall chinook salmon CWT recoveries are incomplete, relative to the number that will be used in the final analysis. CWTs from adults recovered to date include: 4,134 \leq 5 years old from those released in 1987; 282 \leq 4 years old from those released in 1988; 791 \leq 3 years old from those released in 1989; and 261 \leq 2 years old from those released in 1990. The number of recoveries is extremely low; much lower than the predicted 0.5% for all the 2- to 5- year-old fish. Recovery percentages of fish from the present study are less than recovery percentages of similar groups of hatchery-released fish. Possible

reasons for the overall low recoveries, and their corresponding low survival estimates vary between years, as discussed below.

1987 Releases

Recoveries for 2- to 5-year-old fish from releases of subyearling fall chinook salmon in 1987 are nearly complete; 0.24% or about 52 fish per release group were recovered (Table 2). Based on recoveries to date, a difference in recoveries of about 11.9% would be necessary to prove a statistically significant difference between treatments (Appendix Table 1). Downstream groups were released at the shoreline and were recovered in significantly lower percentages than groups released at the dam (23.3% less than combined upper and mid-level turbine groups; Table 3). Recovery percentages for bypass-released groups averaged 5.3% greater than for combined turbine-released groups, but the difference was not significant. Upper turbine-released groups, thought to pass through the safest of the two turbine passage routes (closer to the blade hub), produced an average of 6.5% fewer recoveries than mid-level turbine-released groups, although this difference was not significant. Data for adult recoveries in 1992 will complete this data set, although few additional tag recoveries are expected. The complete data set will likely be insufficient to distinguish statistical differences between bypass- and turbine-released groups.

Differences in adult recoveries among treatment groups did not indicate the same survival tendencies as those observed in juvenile recoveries. Juvenile recoveries indicated that survival of bypass-released groups was significantly lower than combined turbine-released groups (10.8%; Table 1). Adult tag recovery data indicated just the opposite, although the difference was not significant (5.3%; Table 3).

Table 2.--Coded-wire-tag recoveries from adults which were released as subyearling fall chinook salmon during 1987 to evaluate passage survival at Bonneville Dam. PSMFC database listings through 2 February 1992 and rack recoveries during 1991 at Bonneville, Cascade, and Little White Salmon Hatcheries.

		N	Number o	mber of recoveries and (percent of release) [•] by release location							
Release By		уразв	<u> </u>		M	id-level		 Upper			
date		system		wnstream	1	turbine		turbine	Totals ^b		
24 June	27	(0.1404) ^e	15	(0.1342)	14	(0.1587)	19	(0.1922)	75	(0.1564)	
25 June	23	(0.1415)	21	(0.1350)	59	(0.1862)°	13	(0.0865)	116	(0.1373)	
26 June	33	(0.1841)	18	(0.1121)	34	(0.2021)	57	(0.1995)°	142	(0.1745)	
27 June	36	(0.2042)	47	(0.1392) ^e	16	(0.0944)	. 31	(0.1838)	130	(0.1554)	
28 June	77	(0.2145)°	24	(0.1402)	44	(0.2666)	22	(0.1167)	167	(0.1845)	
1 July	35	(0.2517)	24	(0.1531)	88	(0.2504)°	24	(0.1520)	171	(0.2018)	
2 July	37	(0.2065)	26	(0.1457)	29	(0.1667)	76	(0.216 3) ^c	168	(0.1838)	
3 July	39	(0.2134)	53	(0. 1 573)°	37	(0.2004)	42	(0.2573)	171	(0.2071)	
4 July	73	(0.2016)°	37	(0.2050)	52	(0.2827)	38	(0.2136)	200	(0.2257)	
5 July	51	(0.2794)	31	(0.1715)	49	(0.2660) ^{cd}	50	(0.2806) ^d	181	(0.2494)	
8 July	41	(0.2241)	47	(0.2598)	43	(0.2328)	97	(0.2722)°	228	(0.2472)	
9 July	69	(0.3672)	97	(0.2627)°	72	(0.3848)	52	(0.2822)	290	(0.3242)	
10 July	105	(0.2808)°	48	(0.2652)	61	(0.3228)	46	(0.2514)	260	(0.2801)	
11 July	55	(0.2933)	46	(0.2518)	87	(0.2290)°	50	(0.2807)	238	(0.2637)	
12 July	68	(0.3626)	38	(0.2103)	45	(0.2427)	128	(0.3507)°	279	(0.2916)	
15 July	68	(0.3642)	113	(0.3058)°	57	(0.3209)	41	(0.2250)	279	(0.3040)	
16 July	102	(0.2726)°	41	(0.2277)	54	(0.2861)	54	(0.2991)	251	(0.2714)	
17 July	43	(0.2294)	52	(0.2805)	120	(0.3156)°	57	(0.3280)	272	(0.2884)	
18 July	71	(0.3792)	35	(0.1889)	70	(0.3697)	123	(0.3378)°	299	(0.3189)	
19 July	58	(0.3254)	77	(0.2103)°	<u>48</u>	(0.2623)	<u> </u>	(0.1857)	<u>217</u>	(0.2459)	
Totals	1,111		890		1,079		1,054		4,134		
No. releas	sed 43	4,880	43	5,099	4	23,294	4	27,112	1,	720,385	
Mean rec	ov. %°	0.2568		0.1978		0.2520		0.2356	•	0.2356 ^r	
ANOVA ⁶		1		2		1		1			

• Calculated by dividing the number of observed recaptures by the number of fish released (adjusted for tag loss) and then multiplying by 100.

^b Calculated as the unweighted average of group recapture percentages for releases on that date.

^c Double groups (40,000 vs. 20,000 fish); on 24 June about 20,000 vs. 10,000 fish.

^d At release on 5 July 1987, diminished oxygen in the tank truck appeared to have caused mortality to portions of the mid-level turbine and upper turbine-released groups. The initial on-site mortality estimates were 50 and 10% respectively. Based on juvenile recovery data we changed the estimates to 100 and 50%. Those estimates were incorrect, thus we have altered them to 50 and 0% respectively.

 Weighted equally by block (i.e., by release day). Empirical standard error = √Mean Square Error ÷ n = 0.009850.

^f Grand mean = average for treatment mean recovery percentage, used in ANOVA.

⁵ Common number indicates no significant difference at $\alpha = 0.05$. Calculated detectable difference = 11.9% (see Appendix Table 1).

Treatment	1987	1988	1989	1990	Avera
		Recovery P	ercentage		
Bypass	0.2568	0.0154	0.0339	0.0095 (0.0135) ^b	
Upper turbine	0.2356	0.0179	0.0323	nt°	
Mid-level turbine	0.2520	0.0138	0.0356	0.0125	
Tailrace	nt	0.0184	0.0413	0.0131 (0.0169) ⁶	
Downstream	0.1978 ^d	0.0152	0.0387	nt	
Spillway	nt	nt	0.0410	nt	
	-0.0	29.7	-9.3	nt	4.6
opper turbine	Percentag	29.7 e difference from	-9.3 combined turb	nt ine-released gro	4.6 ups ^f
Bypass	<u>Percentag</u> 5.3	29.7 e difference from -3.1	-9.3 <u>combined turb</u> -0.3	nt <u>ine-released gro</u> -24.0 ^b	4.6 ups ^f -5.5
Bypass	<u>Percentag</u> 5.3 Percer	29.7 <u>e difference from</u> -3.1 ntage difference f	-9.3 <u>combined turb</u> -0.3 rom tailrace-re	nt <u>ine-released gro</u> -24.0 ^b leased groups ^s	4.6 ups ^r -5.5
Bypass Bypass	-0.5 Percentage 5.3 Percer nt	29.7 e difference from -3.1 ntage difference f -16.3	-9.3 <u>combined turb</u> -0.3 <u>rom tailrace-re</u> -17.9	nt <u>ine-released gro</u> -24.0 ^b <u>leased groups^g -20.1</u>	4.6 ups ^r -5.6 -18.1
Bypass Bypass Combined turbine	-0.5 Percentage 5.3 Percer nt nt nt	29.7 e difference from -3.1 ntage difference f -16.3 -13.6	-9.3 <u>combined turb</u> -0.3 <u>rom tailrace-re</u> -17.9 -17.7	nt <u>ine-released gro</u> -24.0 ^b <u>leased groups^g -20.1 -4.6^b</u>	4.6 ups ^r -5.5 -18.1 -12.0
Bypass Bypass Combined turbine	Percentage 5.3 Percer nt nt Percentag	29.7 e difference from -3.1 atage difference f -16.3 -13.6 ge difference from	-9.3 <u>combined turb</u> -0.3 <u>rom tailrace-re</u> -17.9 -17.7 a downstream-1	nt <u>ine-released gro</u> -24.0 ^b <u>leased groups⁸ -20.1 -4.6^b released groups</u>	4.6 <u>ups^r</u> -5.5 -18.1 -12.0
Bypass Combined turbine Bypass	Percentage 5.3 Percer nt nt Percentag 29.8 ^d	29.7 e difference from -3.1 ntage difference f -16.3 -13.6 ze difference fron 1.3	-9.3 <u>combined turb</u> -0.3 <u>rom tailrace-re</u> -17.9 -17.7 <u>a downstream-r</u> -12.4	nt <u>ine-released gro</u> -24.0 ^b <u>leased groups^g -20.1 -4.6^b <u>released groups</u> nt</u>	4.6 ups ^r -5.5 -18.1 -12.0 -5.6
Bypass Combined turbine Bypass Combined turbine	Percentage 5.3 Percen nt nt Percentag 29.8 ^d 23.3 ^d *	29.7 <u>e difference from</u> -3.1 <u>atage difference f</u> -16.3 -13.6 <u>ge difference from</u> 1.3 4.6	-9.3 <u>combined turb</u> -0.3 <u>rom tailrace-re</u> -17.9 -17.7 <u>a downstream-1</u> -12.4 -12.1	nt <u>ine-released gro</u> -24.0 ^b <u>leased groups^g</u> -20.1 -4.6 ^b <u>released groups</u> nt nt	4.6 <u>ups^r</u> -5.5 -18.1 -12.0 -5.6 5.3
Bypass Combined turbine Bypass Combined turbine Tailrace	Percentage 5.3 Percer nt nt nt 29.8 ^d 23.3 ^{d*} nt	29.7 e difference from -3.1 atage difference f -16.3 -13.6 ze difference from 1.3 4.6 21.1	-9.3 <u>combined turb</u> -0.3 <u>rom tailrace-re</u> -17.9 -17.7 <u>a downstream-r</u> -12.4 -12.1 6.7	nt <u>ine-released gro</u> -24.0 ^b <u>leased groups^g -20.1 -4.6^b released groups nt nt nt</u>	4.6 <u>ups^f</u> -5.5 -18.1 -12.0 -5.6 5.3 13.9

Table 3.--Summary of adult recovery percentages and percentage differences among groups, Bonneville Dam passage survival study, 1987-1990.

* Weighted by year.

æ

A

3

^b In 1990, the first 11 turbine release groups were compromised, thus only the last 10 groups can be compared to bypass or tailrace release groups. All 21 groups were used for comparing the bypass to tailrace release groups, shown in parentheses.

° nt = not tested.

^d The downstream release in 1987 was made at the shoreline, whereas all other releases were in mid-river. Treatment differences using this datum are excluded from the average.

* Percentage difference from <u>indicated group</u> = [(Treatment% - <u>indicated group</u>%) ÷ <u>indicated</u> group%] x 100

^f Average of turbine groups released at the ceiling and at mid-depth of the intake.

⁸ Tailrace release site was at the downstream side of turbine discharge boil, directly into or 46 m upstream from the bypass discharge plume.

* Significant at $\alpha = 0.05$.

Adult recovery percentages of URB fall chinook salmon from the study were low compared to recoveries of URB fall chinook salmon released from Bonneville Hatchery in 1987 (Table 4). Fish released at the hatchery in September were recovered at 2 to 3 times the percentage of study fish. We believe that poor adult survival was a result of early release dates and small size of fish at release (4.5 g average; 101 fish/lb). Small size may be associated with a late egg take and stunting from prophylactic treatment for disease. Although the size of study fish did not change significantly during the release period, recovery percentages for adults showed a progressive increase in direct relation to release date (Table 2). Adult recovery percentages, averaged by week of release, increased from 0.162 to 0.214% in late June and early July to 0.281 to 0.306% in mid-July. Bonneville hatchery fish released in November were recovered as adults at a percentage similar to study fish. Also, adult recoveries of URB fall chinook salmon released elsewhere in the basin were recovered at percentages similar to those of study groups (Table 4).

Distribution of tag recoveries by area (Appendix Table 2) appeared similar to that of earlier broods of URB fall chinook salmon released from Bonneville Hatchery. About 74% of total recoveries were made from the Columbia River Basin: 41% from river fisheries; 21% from Bonneville Hatchery; 11% from Bonneville Pool hatcheries; and 1% strays to up-river sites. Recoveries from the 1991 fisheries in Canada and Alaska are presently unreported; when these data are recorded, this will diminish the distribution percentage for returns to the Columbia River Basin.

۲

1988 Releases

Recoveries for 2- to 4- year-old fish from releases in 1988 averaged 0.02%, or about five fish per release group (Table 5). Recovery data will be nearly complete with 1992 CWT returns (age 5). Based on recoveries to date, a difference in recoveries of about 37.4% would be necessary to prove a statistically significant difference between

	Rele	ease Information				Recov	eries
CWT	Source	Site	Date	Size (g)	Number	Number	%
		1987 Re	eleases				
232222	Bonn.Surv.Study	Mid-level turb. ¹	° 6/25-7/19	4.4	423,294	1122	0.27
074738	Bonneville Hat.	Tanner Cr.	9/8	21.9	143,042	787	0.55
074725	Bonneville Hat.	Tanner Cr.	9/8	21.4	64,106	331	0.52
074735	Bonneville Hat.	Tanner Cr.	9/8	19.6	81,012	596	0.74
074742	Bonneville Hat.	Tanner Cr.	9/8	20.3	76,299	630	0.83
074318	Bonneville Hat.	Tanner Cr.	11/5	35.2	110,468	311	0.28
074320	Bonneville Hat.	Tanner Cr.	11/5	34.4	107,515	289	0.27
633315	Klickitat Hat.	Klickitat	6/5	6.5	102,426	110	0.11
073914	Irrigon Hat.	Umatilla R.	5/8	7.5	121,076	330	0.27
B50714	Drano Lake Nets	Drano Lake	5/22	4.6	480,641	932	0.19
634261	Lyons Ferry Hat.	Lwr.Snake R.	6/1	9.5	251,646	244	0.10
634401	Lyons Ferry Hat.	Lwr.Snake R.	6/2	6.4	255,998	541	0.21
051921	Priest Rapids Hat.	Lwr.Yakima R.	5/4	3.9	196,980	137	0.07
051918	Priest Rapids Hat.	Yakima@Prosser	5/5	3.9	147,896	206	0.14
051922	Priest Rapids Hat.	Yakima@Prosser	5/27	7.0	489,950	21	0.00
634128	Priest Rapids Hat.	Columbia R.	6/25	8.3	201,779	171	0.08
	•	1988 Re	eleases				•
232650	Bonn.Surv.Study	Downstream ^b	6/27-7/24	6 - 9	385,275	86	0.02
232631°	Rep.10 Surv.Study	Downstream	7/22	7.9	28,413	6	0.02
232641°	Rep.11 Surv.Study	Downstream	7/23	8.0	29,335	10	0.03
232650°	Rep.12 Surv Study	Downstream	7/24	9.5	29,383	18	0.06
074254	Bonneville Hat.	Tanner Cr.	6/1	5.2	53,333	22	0.04
074303	Bonneville Hat.	Tanner Cr.	8/8	11.5	53,014	90	0.17
074304	Bonneville Hat.	Tanner Cr.	11/3	34.6	52,809	66	0.12
073555	Bonneville Hat.	Tanner Cr.	3/7 ^a	51.0	24,352	84	0.34
075007	Irrigon Hat.	Umatilla R.	5/6	6.6	198,285	50	0.03
B50715	Little Wh.Sal.Hat.	Lwr. Yakima R.	5/17	1.6	383,855	9	0.00
0501010103	Yakima Net Pens	Upr. Yakima R.	5/18	3.8	236,469	1	0.00
635216	Lyons Ferry Hat.	Lwr. Snake R.	6/1	8.6	494,488	23	0.00
635232	Hanford Reach	Hanford	6/6	1.6	205,103	24	0.01

Table 4.--Adult recovery percentages for Bonneville Dam passage survival study releases compared to other releases of upriver bright fall chinook salmon (from PSMFC data base 19 May 1992).

æ

3

1

Table 4.--Continued

	Re	lease Information				Recover	ies
CWT	Source	Site	Date	Size (g)	Number	Number	%
		1989 Re	leases				
233204	Bonn.Surv.Study	Spillway ^b	6/22-7/22	6-10	349.769	122	0.03
075033	Bonneville Hat.	Tanner Cr.	6/26	6.7	100.166	20	0.02
075036	Bonneville Hat.	Mid-chan.Col. R.	6/26	7.4	101.050	22	0.02
074648	Irrigon Hat.	Umatilla R.	5/16	6.0	624.295	14	0.00
074763	Irrigon Hat.	Umatilla R.	10/18	41.6	153,249	11	0.01
0501010206	Little Wh.Sal.Hat.	Lwr. Yakima R.	6/1	3.0	380,071	1	0.00
0501010204	Yakima Net Pens	@ Dam on Yak. H	R. 5/30	6.3	282,302	1	0.00
635249	Priest Rapids Hat.	Columbia R.	6/29	8.1	201,608	14	0.01
635252	Hanford Reach	Hanford	6/10		200,630	11	0.01
630228	Lyons Ferry Hat.	Lwr. Snake R.	6/8	5.0	226,478	4	0.00
635207	Lyons Ferry Hat.	Lwr. Snake R.	6/14	6.1	234,103	3	0.00
		1990 Re	leases				
232639	Bonn.Surv.Study	Tailrace ^b	6/30-8/3	6-11	582,106	17	0.00
075409	Bonneville Hat.	Tanner Cr.	7/2	6.3	98,382	1	0.00
075407	Bonneville Hat.	Mid-chan Col.R.	7/2	6.4	93,127	6	0.01
052338	Little Wh.Sal.Hat.	Little Wh.Sal.R.	6/25	4.1	44,804	0	0.00
631459	Klickitat Hat.	Klickitat R.	5/17-6/7	6.0	234,841	0	0.00
075405	Irrigon Hat.	Umatilla R.	5/23	4.8	159,020	4	0.00
075327	Irrigon Hat.	Umatilla R.	10/16	51.5	136,876	2	0.00
052120	Little Wh.Sal.Hat.	Lwr. Yakima R.	5/15	2.5	156,966	0	0.00
0501010210	Yakima Net Pens	@ Dam on Yak. I	R. 5/18	4.5	237,065	1	0.00
630732	Priest Rapids Hat.	Columbia R.	6/19	8.0	194,530	2	0.00
630755	Hanford Reach	Hanford	6/5		144,164	0	0.00
635550	Lyons Ferry Hat.	Lwr. Snake R.	6/8	8.3	484,918	3	0.00

•

ð

۴

* Coded-wire tag. More than one tag code may be represented by the release data; a list of tags represented is shown in Appendix Table 7.

^b The treatment groups with the highest juvenile recovery percentage (lowest treatment effects) were used for comparison with other URB release groups.

^c Sub-set of the 1988 Bonneville Dam passage survival study recovery data listed directly above.

^d Released the following spring.

Table 5.--Coded-wire-tag recoveries from adults which were released as subyearling fall chinook salmon during 1988 to evaluate passage survival at Bonneville Dam. PSMFC database listings through 2 February 1992 and rack recoveries during 1991 at Bonneville, Cascade, and Little White Salmon Hatcheries.

]	Number of r	ecove	ries and (p	ercent	of release)"	by rel	ease location		
Release date		Bypass system	De	ownstream		Tailrace	j	Mid-level turbine		Upper turbine		Totals ^b
27 June	4	(0.0137)	2	(0.0066)	4	(0.0136)	5	(0.0171)	7	(0.0238)	22	(0.0150)
28 June	5	(0.0165)	1	(0.0033)	3	(0.0099)	2	(0.0067)	3	(0.0100)	14	(0.0093)
29 June	2	(0.0067)	4	(0.0136)	3	(0.0100)	2	(0.0067)	3	(0.0103)	14	(0.0095)
30 June	4	(0.0134)	6	(0.0201) ^c	4	(0.0134)	4	(0.0133)	5	(0.0177)	23	(0.0156)
1 July	3	(0.0101)	4	(0.0133)	6	(0.0200)	6	(0.0203)	3	(0.0101)	22	(0.0148)
2 July	4	(0.0135)	2	(0.0034)	7	(0.0236)	3	(0.0100)		d	16	(0.0126)
13 July	4	(0.0135)	4	(0.0137)	3	(0.0100)	2	(0.0068)	5	(0.0168)	18	(0.0122)
14 July	8	(0.0274)	5	(0.0170)	4	(0.0135)	3	(0.0101)	7	(0.0237)	27	(0.0183)
15 July	4	(0.0135)	3	(0.0102)	4	(0.0140)	5	(0.0167)	7	(0.0233)	23	(0.0155)
22 July	5	(0.0160)	3	(0.0102)	6	(0.0213)	5	(0.0168)	3	(0.0102)	22	(0.0149)
23 July	4	(0.0135)	8	(0.0273)	4	(0.0143)	7	(0.0238)	9	(0.0304)	32	(0.0219)
24 July	8	(0.0266)	13	(0.0441)	17	(0.0568)	5	(0.0167)	6	(0.0202)	49	(0.0329)
			-		-		-		_			
Totals	55		55		65		49		58		282	
Number released		357,823		385,275		353,410		356,644		324,244	1	,777,396
Mean % re	cov.•	0.0154		0.0152		0.0184		0.0138		0.0179		0.0161 ^r
ANOVA [#]		1		1		1		1		1		
	Release date 27 June 28 June 29 June 30 June 1 July 2 July 13 July 14 July 15 July 22 July 23 July 24 July Totals Number released Mean % re ANOVA ^s	Release date27 June28 June29 June29 June30 June41 July32 July413 July414 July815 July23 July424 July87otals55Number releasedMean % recov.*ANOVA*	Release date Bypass system 27 June 4 (0.0137) 28 June 5 (0.0165) 29 June 2 (0.0067) 30 June 4 (0.0134) 1 July 3 (0.0101) 2 July 4 (0.0135) 13 July 4 (0.0135) 14 July 8 (0.0274) 15 July 4 (0.0135) 22 July 5 (0.0160) 23 July 4 (0.0135) 24 July 8 (0.0266) Totals 55 Number solution 357,823 released Mean % recov.* 0.0154	Release date Bypass system Diagonal 27 June date 4 (0.0137) 2 2 28 June 5 (0.0165) 1 2 1 29 June 2 (0.0067) d 30 June data (0.0134) 6 30 June data (0.0134) 6 1 30 June data (0.0135) 2 2 30 June data (0.0135) 2 2 31 July data (0.0135) 4 4 2 July data (0.0135) 4 3 13 July data (0.0135) 4 3 14 July data (0.0135) 3 3 22 July data 5 (0.0160) 3 3 23 July data (0.0135) 8 3 24 July data (0.0266) 13 13	Release date Bypass system Downstream 27 June 4 (0.0137) 2 (0.0066) 28 June 5 (0.0165) 1 (0.0033) 29 June 2 (0.0067) 4 (0.0136) 30 June 4 (0.0134) 6 (0.0201) ^e 1 July 3 (0.0101) 4 (0.0133) 2 July 4 (0.0135) 2 (0.0034) 13 July 4 (0.0135) 4 (0.0137) 14 July 8 (0.0274) 5 (0.0170) 15 July 4 (0.0135) 3 (0.0102) 22 July 5 (0.0160) 3 (0.0102) 23 July 4 (0.0135) 8 (0.0273) 24 July 8 (0.0266) 13 (0.0441)	Release date Bypass system Downstream 27 June 4 (0.0137) 2 (0.0066) 4 28 June 5 (0.0165) 1 (0.0033) 3 29 June 2 (0.0067) 4 (0.0136) 3 30 June 4 (0.0134) 6 (0.0201) ⁶ 4 1 July 3 (0.0101) 4 (0.0133) 6 2 July 4 (0.0135) 2 (0.0034) 7 13 July 4 (0.0135) 4 (0.0137) 3 14 July 8 (0.0274) 5 (0.0170) 4 15 July 4 (0.0135) 8 (0.0273) 4 22 July 5 (0.0160) 3 (0.0441) 17	Release date Bypass system Downstream Tailrace 27 June 4 (0.0137) 2 (0.0066) 4 (0.0136) 28 June 5 (0.0165) 1 (0.0033) 3 (0.0099) 29 June 2 (0.0067) 4 (0.0136) 3 (0.0100) 30 June 4 (0.0134) 6 (0.0201) ⁶ 4 (0.0134) 1 July 3 (0.0101) 4 (0.0133) 6 (0.0200) 2 July 4 (0.0135) 2 (0.0034) 7 (0.0236) 13 July 4 (0.0135) 4 (0.0137) 3 (0.0100) 14 July 8 (0.0274) 5 (0.0170) 4 (0.0135) 15 July 4 (0.0135) 8 (0.0273) 4 (0.0140) 22 July 5 (0.0160) 3 (0.0141) 17 (0.0568)	Release date Bypass system Downstream Tailrace 27 June 27 June 38 June 29 June 2 (0.0067) 4 (0.0137) 1 (0.0033) 2 (0.0066) 3 (0.0099) 2 (0.0067) 4 (0.0136) 3 (0.0100) 5 3 (0.0100) 30 June 1 July 3 (0.0101) 4 (0.0134) 4 (0.0135) 6 (0.0201) ⁶ 4 (0.0133) 4 (0.0134) 4 (0.0133) 4 (0.0134) 4 (0.0135) 4 (0.0133) 5 (0.0034) 6 (0.0200) 7 (0.0236) 6 3 (0.0100) 31 July 4 (0.0135) 4 (0.0137) 5 (0.0170) 3 (0.0100) 4 (0.0135) 2 4 (0.0140) 2 4 (0.0140) 5 22 July 5 (0.0160) 3 (0.0102) 4 (0.0140) 4 5 (0.0213) 5 23 July 4 (0.0135) 5 8 (0.0273) 4 4 (0.0143) 7 24 July 8 (0.0266) 3 385,275 353,410 Number released 357,823 385,275 353,410 5 0.0184 Mean % recov.* 0.0154 0.0152 0.0184	Release date Bypass system Downstream Tailrace Mid-level turbine 27 June 4 (0.0137) 2 (0.0066) 4 (0.0136) 5 (0.0171) 28 June 5 (0.0165) 1 (0.0033) 3 (0.0099) 2 (0.0067) 29 June 2 (0.0067) 4 (0.0136) 3 (0.0100) 2 (0.0067) 30 June 4 (0.0134) 6 (0.0201)* 4 (0.0133) 1 (0.0133) 1 (0.0133) 2 (0.0067) 30 June 4 (0.0135) 2 (0.0034) 7 (0.0236) 3 (0.0100) 31 July 3 (0.0135) 2 (0.0034) 7 (0.0236) 3 (0.0100) 13 July 4 (0.0135) 4 (0.0137) 3 (0.0100) 2 (0.0068) 14 July 8 (0.0274) 5 (0.0170) 4 (0.0140) 5 (0.0167)	Release date Bypass system Downstream Tailrace Mid-level turbine 27 June 4 (0.0137) 2 (0.0066) 4 (0.0136) 5 (0.0171) 7 28 June 5 (0.0165) 1 (0.0033) 3 (0.0099) 2 (0.0067) 3 29 June 2 (0.0067) 4 (0.0136) 3 (0.0100) 2 (0.0067) 3 30 June 4 (0.0134) 6 (0.0201)* 4 (0.0133) 5 1 July 3 (0.0101) 4 (0.0133) 6 (0.0203) 3 2 July 4 (0.0135) 2 (0.0034) 7 (0.0236) 3 (0.0100) 13 July 4 (0.0135) 4 (0.0137) 3 (0.0100) 2 (0.0068) 5 14 July 8 (0.0274) 5 (0.0170) 4 (0.0135) 3 (0.0167) 7 22 July <	Release date Bypass system Downstream Tailrace Mid-level turbine Upper turbine 27 June 4 (0.0137) 2 (0.0066) 4 (0.0136) 5 (0.0171) 7 (0.0238) 28 June 5 (0.0165) 1 (0.0033) 3 (0.0067) 3 (0.0100) 29 June 2 (0.0067) 4 (0.0136) 3 (0.0103) 2 (0.0067) 3 (0.0100) 29 June 2 (0.0067) 4 (0.0134) 4 (0.0133) 5 (0.0177) 1 July 3 (0.0101) 4 (0.0133) 6 (0.0203) 3 (0.0100) 4 1 July 4 (0.0135) 2 (0.0034) 7 (0.0236) 3 (0.0100) 4 1 July 8 (0.0274) 5 (0.0170) 4 (0.0135) 3 (0.0101) 7 (0.0237) 15 July 4 (0.0135) 3	Release date Bypass system Downstream Tailrace Mid-level turbine Upper turbine 27 June 4 (0.0137) 2 (0.0066) 4 (0.0136) 5 (0.0171) 7 (0.0238) 22 28 June 5 (0.0165) 1 (0.0033) 3 (0.0099) 2 (0.0067) 3 (0.0100) 14 29 June 2 (0.0067) 4 (0.0136) 3 (0.0100) 2 (0.0067) 3 (0.0103) 14 30 June 4 (0.0134) 6 (0.0201) ^r 4 (0.0133) 5 (0.0177) 23 1 July 3 (0.0101) 4 (0.0133) 6 (0.0203) 3 (0.0101) 22 2 July 4 (0.0135) 2 (0.0034) 7 (0.0236) 3 (0.0101) 22 2 July 4 (0.0135) 3 (0.0102) 2 (0.0068) 5 (0.0168) 18

• Calculated by dividing the number of observed recaptures by the number of fish released (adjusted for tag loss) and then multiplying by 100.

Calculated as the unweighted average of group recapture percentages for releases on that date.

Group released at shoreline lateral to the normal release site; for ANOVA, this was treated as a downstream treatment.

d No fish released.

Weighted equally by block (i.e., by release day). Empirical standard error = \sqrt{Mean} Square Error + n = 0.0020976.

Grand mean = average for treatment mean recovery percentage used in ANOVA. ſ

Common number indicates no significant difference at $\alpha = 0.05$. Calculated detectable difference = 37.2% (see Appendix 8 Table 1).

insufficient to draw substantive conclusions. Adult recovery percentages for URB fall chinook salmon from the present study were low compared to those of URB fall chinook salmon released from Bonneville Hatchery in 1988 (Table 4). Fish released at the hatchery in August were recovered at 8 times the percentage of study fish. At release, the size and condition of study fish appeared normal. However, the last group of study fish released were taken from Bonneville Hatchery production lots and were larger than study fish released earlier, weighing an average of 9.5 g each (48 fish/lb) compared to 8.0 and 7.9 g (56.5 and 57.5 fish/lb) respectively, for study fish released the previous 2 days. These production-lot fish were recovered as adults at a substantially greater percentage (0.06 compared to 0.03 and 0.02%, respectively). Adult recoveries of URB fall chinook salmon released elsewhere in the basin were recovered at percentages equal to or less than those of the study groups (Table 4). For the entire Columbia River Basin, adult contribution from 1988 releases of URB fall chinook salmon were poor. In particular, adult recoveries for study fish released in 1988 were only about 10 and 20% of those from 1987 and 1989 study groups (see Appendix Tables 2, 3, and 4 for comparison of similarage adult recoveries).

1

æ

Distribution of adult tag recoveries by area was similar to recoveries from study fish released in 1987. Recoveries from Alaska and Canada are not yet complete and further evaluation is inappropriate at this time (Appendix Table 3).

1989 Releases

Recovery for 2- to 3- year-old adults from 1989 releases of subyearling chinook salmon averaged 0.04%, or about 11 fish per release group (Table 6). Based on recoveries to date, a difference in recoveries of about 25.2% would be necessary to prove a

1

A

6

Table 6.--Coded-wire-tag recoveries from adults which were released as subyearling fall chinook salmon during 1989 to evaluate passage survival at Bonneville Dam. PSMFC database listings through 2 February 1992 and rack recoveries during 1991 at Bonneville, Cascade, and Little White Salmon Hatcheries.

]	Number of 1	recap	tures and	(perc	ent of relea	se)" b	y release l	ocatio	n		
•	Release date	B	ypass ystem	D	ownstream	Т	ailrace	M	id-level surbine	S	pillway	ן t	Upper urbine	To	tals ^b
														-	
	22 June	3	(0.0103)	5	(0.0168)	9	(0.0312)	3	(0.0102)	5	(0.0179)	4	(0.0137)	29	(0.0167)
_	23 June	3	(0.0103)	6	(0.0202)	3	(0.0104)	4	(0.0136)	1	(0.0036)	5	(0.0172)	22	(0.0126)
	24 June	4	(0.0138)	3	(0.0101)	5	(0.0174)	2	(0.0068)	6	(0.0214)	4	(0.0137)	24	(0.0139)
	6 July	5	(0.0168)	8	(0.0272)	6	(0.0202)	9	(0.0303)	11	(0.0377)	12	(0.0407)	51	(0.0288)
	7 July	9	(0.0303)	11	(0.0374)	10	(0.0337)	5	(0.0168)	11	(0.0377)	6	(0.0203)	52	(0.0294)
	8 July	9	(0.0303)	15	(0.0510)	9	(0.0303)	8	(0.0269)	8	(0.0275)	7	(0.0237)	56	(0.0316)
A	13 July	14	(0.0473)	12	(0.0405)	22	(0.0752)	10	(0.0338)	10	(0.0335)	14	(0.0474)	82	(0.0463)
	14 July	12	(0.0405)	14	(0.0472)	13	(0.0444)	14	(0.0473)	20	(0.0670)	12	(0.0406)	85	(0.0478)
	15 July	8	(0.0270)	11	(0.0370)	15	(0.0513)	21	(0.0709)	17	(0.0569)	7	(0.0237)	79	(0.0445)
	20 July	20	(0.0678)	20	(0.0665)	15	(0.0504)	26	(0.0869)	22	(0.0744)	11	(0.0365)	114	(0.0638)
•	21 July	14	(0.0475)	9	(0.0300)	18	(0.0605)	7	(0.0234)	14	(0.0474)	11	(0.0366)	73	(0.0409)
()	22 July	19	(0.0651)	· 24	(0.0799)	21	(0.0706)	18	(0.0602)	20	(0.0673)	22	(0.0730)	124	(0.0694)
				—				—		—					
	Totals	120		138		146		127		145		115		791	
	Number released		353,573		356,549	3	52,389	3	56,127	34	9,7 6 9	35	4,976	2, 1	123,383
	Mean rec	ov. %	° 0.0339		0.0387		0.0413		0.0356		0.0410		0.0323		0.0371 ^d
	ANOVA•		1		1		1		1		1		1		

Calculated by dividing the number of observed recaptures by the number of fish released (adjusted for tag loss) and then multiplying by 100.

Calculated as the unweighted average of group recapture percentages for releases on that date.

Weighted equally by block (i.e., by release day). Empirical standard error = \sqrt{Mean} Square Error + n = 0.0032863.

Grand mean = average for treatment mean recovery percentage used in ANOVA.

Common number indicates no significant difference at $\alpha = 0.05$. Calculated detectable difference = 25.2% (see Appendix Table 1).

statistically significant difference between treatments with a 95% confidence interval (Appendix Table 1). No differences of that magnitude were evident. The majority of recoveries should come from 4- to 5- year-old fish, to be recovered in 1993 and 1994.

Comparison of recoveries of study fish to those of other groups released in 1989 indicated similar recovery percentages (Table 4). However, the recovery percentages are not as large as those of 1987 releases. Recoveries of 2- and 3- year-old study fish released in 1989 are equivalent to about 70% of those for fish of similar age released in 1987 (Appendix Tables 2 and 4).

Distribution of adult tag recoveries by area is reported in Appendix Table 4, but is incomplete at this time.

1990 Releases

Recoveries for 2-year-old study fish from releases of subyearling fall chinook salmon in 1990 averaged 0.02%, or about four fish per release group (Table 7). Based on recoveries to date, a recovery difference of about 26.7% would be necessary to prove a statistically significant difference between treatments with a 95% confidence interval (Appendix Table 1). No differences of that magnitude were evident. The majority of recoveries should come from age classes 3, 4, and 5, to be recovered in 1993, 1994, and 1995. Distribution of tag recoveries by area is reported in Appendix Table 5.

Table	7Coded-wire-tag recoveries from adults which were released as subyearling fall
	chinook salmon during 1990 to evaluate passage survival at Bonneville Dam.
	PSMFC database listings through 2 February 1992 and rack recoveries during
	1991 at Bonneville, Cascade, and Little White Salmon Hatcheries.

A

A

A)

R

A.

	_	Number	of recap	tures and (pe	rcent of r	elease)" by release	e location	
Release date	B	ypass system	1	failrace	Mid	level turbine	1	l'otals ^b
30 June	3	(0.0118)	4	(0.0143)	4	(0.0146) ^e	11	(0.0136)
2 July	6	(0.0218)	2	(0.0073)	8	(0.0292)°	16	(0.0194)
3 July	1	(0.0036)	6	(0.0219)	4	(0.0145)°	11	(0.0133)
5 July	5	(0.0174)	2	(0.0073)	2	(0.0073)°	9	(0.0107)
6 July	1	(0.0036)	2	(0.0073)	0	(0.0000)°	3	(0.0036)
10 July	3	(0.0108)	4	(0.0146)	4	(0.0139)°	11	(0.0131)
11 July	7	(0.0254)	7	(0.0256)	3	(0.0105)°	17	(0.0205)
12 July	8	(0.0291)	13	(0.0476)	8	(0.0280)°	29	(0.0349)
13 July	7	(0.0255)	9	(0.0329)	7	(0.0245)°	23	(0.0276)
17 July	9	(0.0323)	7	(0.0243)	8	(0.0287)°	24	(0.0284)
<u>18 July</u>	_2	<u>(0.0071)</u>	6	<u>(0.0209)</u>	5	<u>(0.0179)</u> °	<u>13</u>	<u>(0.0153)</u>
Sub totals ^d	52	(0.0171)	62	(0.0204)	53	(0.0172)°	167	(0.0182)
Number released		302,756		304,673		307,553		914,182
20 July	2	(0.0071)	3	(0.0104)	3	(0.0107)	8	(0.0094)
21 July	1	(0.0035)	5	(0.0173)	3	(0.0107)	9	(0.0105)
24 July	8	(0.0293)	7	(0.0265)	7	(0.0282)	22	(0.0280)
25 July	1	(0.0037)	4	(0.0151)	4	(0.0161)	9	(0.0116)
26 July	5	(0.0183)	4	(0.0151)	3	(0.0121)	12	(0.0152)
27 July	5	(0.0183)	4	(0.0151)	2	(0.0081)	11	(0.0138)
31 July	1	(0.0037)	3	(0.0105)	2	(0.0078)	6	(0.0073)
1 Aug	3	(0.0110)	2	(0.0070)	1	(0.0039)	6	(0.0073)
2 Aug	0	(0.0000)	3	(0.0105)	4	(0.0156)	7	(0.0087)
<u>3 Aug</u>	0	<u>(0.0000)</u>	_1	<u>(0.0035)</u>	3	<u>(0.0117)</u>	4	<u>(0.0051)</u>
Sub totals ^d	26	(0.0095)	36	(0.0131)	32	(0.0143)	94	(0.0123)
Number released		274,591		277,433		257,841		
ANOVA		1		1		1		
Totals	78		98		85		261	
Number released	5	577,347	5	82,106	5	65,394	1,5	724,847
Mean % recov. ^d		0.0135		0.0169		°		0.0152*
ANOVA		1		1				

• Calculated by dividing the number of observed recaptures by the number of fish released (adjusted for tag loss) and then multiplying by 100.

^b Calculated as the unweighted average of group recapture percentages for releases on that date.

[°] Release hose failure compromised survival of the first 11 releases-data not used in ANOVA.

^d Mean recovery percentage weighted by block (i.e., by release day).

* Grand mean = average for treatment mean recovery percentage used in ANOVA.

^f Common number indicates no statistical difference at $\alpha = 0.05$. Empirical standard error = \sqrt{Mean} Square Error + n = 0.0015491 for three treatments of 10 releases, and = 0.001378 for two treatments of 21 releases. Detection difference = 26.7% for two treatments, and 39.8% for three treatments (see Appendix Table 1).

CONCLUSIONS

Analysis regarding passage survival differences among various routes through Bonneville Dam Second Powerhouse, tailrace, and spillway will not be final for several years, pending completion of adult recovery data. The reported recovery data are preliminary, the status of which is reported in Appendix Table 6. Based on these preliminary data, adult contributions to the various fisheries and returns to hatcheries from study fish have been less than for other URB fall chinook salmon released at Bonneville Hatchery. Because of these low recovery percentages, our ability to identify statistically significant differences among treatments is much less than the planned 4 to 5% (at this date the range of detectable difference is 11.9 to 39.8%).

Trends observed in juvenile recovery data suggest bypass system passage did not substantially improve survival over turbine passage. Our ability to identify statistically significant differences among treatments was about 5% for juvenile recovery data from all years combined. We speculate that bypass-released fish had decreased survival as a result of: 1) increased predation because of point-source release location and water currents directing fish toward the shoreline, 2) increased predation because of poor predator avoidance due to stress and injuries from passage, and 3) increased indirect mortality because of synergistic effects of stress and injuries incurred from passage through the bypass system combined with the high water temperatures and diseases incurred during migration down the river. We must emphasize that these data represent only summertime conditions encountered by subyearling size fall chinook salmon at Bonneville Dam Second Powerhouse, tailrace, and spillway. Also, test fish used in this study were transported and released directly from a hatchery. Naturally migrating fish may not show these same trends because of differences in predator avoidance and migration behavior.

ð

ACKNOWLEDGMENTS

Thanks to the outstanding efforts and excellent cooperation of the tag processing personnel at the Clackamas Laboratory, Oregon Department of Fish and Wildlife, we received adult tag data from Bonneville Hatchery returns early in the year. Early information was necessary to make systemwide decisions on allocation of URB fall chinook salmon or future testing.

We also acknowledge the extra efforts of the staff of PSMFC. As always, they quickly accommodated our requests for help in collecting large amounts of specialized recovery data.

G

REFERENCES

Ledgerwood, R. D., E. M. Dawley, L. G. Gilbreath, P. J. Bentley, B. P. Sandford,

and M. H. Schiewe.

1990. Relative survival of subyearling chinook salmon which have passed Bonneville Dam via the spillway or the Second Powerhouse turbines or bypass system in 1989, with comparisons to 1987 and 1988. Report to the U.S. Army Corps of Engineers, Contract E85890024/E86890097, 136 p. (Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.)

Ledgerwood, R. D., E. M. Dawley, L. G. Gilbreath, P. J. Bentley, B. P. Sandford, and M. H. Schiewe.

1991. Relative survival of subyearling chinook salmon which have passed through the turbines or bypass system of Bonneville Dam Second Powerhouse, 1990. Report to the U.S. Army Corps of Engineers, Contract E86900104, 90 p. (Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.)

Sokal, R. R., and F. J. Rohlf.

1981. Biometry, 2nd. Edition. W. H. Freeman and Company, San Francisco, CA. 776 p.

18

ð

Appendix Table 1.--Analysis of treatment effects on adult fall chinook salmon recovery data from 1987-1990 tests using a randomized block ANOVA design where each day was considered a block (Sokal and Rohlf 1981).

H_a: There was homogeneity between recovery distributions of treatments.

1987 Releases--

1

A.

ANOVA Table

	Sum of		Mean		Significance
Source	squares	D.F .	square	F	level
Blocks	0.2532842	19	0.0133307		
Treatments	0.0429558	3	0.0143186	7.36	0.0003
Error	0.1109063	57	0.0019457		
Total	0.4071464	79			

m	a .	76	Homogeneous
Treatment	Count	<u>Mean</u>	groups
Upper turbine	20	0.235565	1
Mid-level turb.	20	0.252045	1
Bypass	20	0.256805	1
Tailrace	20	0.197815	2
Grand mean		0.235558	

Fishers' Protected Least Significance Difference (FPLSD) FPLSD = $t_{(\alpha=0.05)(df=57)}\sqrt{(2MSE/r)} = 0.0279344$. Detectable difference = (FPLSD/Grand mean)100 = 11.9%

1988 Releases--

ANOVA Table

	Sum of		Mean		Significance
Source	squares	D.F .	square	F	level
Blocks	0.0022028	11	0.0002003		
Treatments	0.0001698	4	0.0000424	0.79	0.5396
Error	0.0023175	43	0.0000539		
Total	0.0046901	58			

One missing observation.

Treatment	Count	Mean	Homogeneous
Upper turbine	11	0.0178636	1
Mid-level turb.	12	0.013750	1
Bypass	12	0.0153667	1
Tailrace	12	0.0183667	1
Downstream	12	0.0152333	1
Grand mean		0.016116	

 $\begin{array}{l} \text{FPLSD} = t_{(\alpha=0.05)(\text{df}=43)} \sqrt[]{(2MSE/r)} = 0.00602. \\ \text{Detectable difference} = (\text{FPLSD/Grand mean})100 = 37.4\% \end{array}$

1989 Releases--

ANOVA Table

	Sum of			Mean		Si	mificance
Source	squares	Ľ).F.	square		F	level
Blocks	0.022418	30	11	0.0020	380		
Treatments	0.00085	55	5	0.0001	711	1.310692	0.2730
Error	0.00718)2	55	0.0001	305		
Total	0.03045	37	71				
					Home	geneous	
Treat	nent	Cour	<u>nt</u>	Mean	gro	ups	
Upper	turbine	12	0	0.0322583		1	
Mid-le	vel turb.	12	C	0.0355917		1	
Bypas	8	12	C	0.0339167		1	
Tailra	ce	12	0).0413		1	
Spillw	ay	12	C).041025		1	
Downs	stream	12	C).03865		1	
Grand	mean		C).0371			

 $\label{eq:FPLSD} \begin{array}{l} {\rm FPLSD} = {\rm t}_{_{(a=0.05)(df=55)}} \sqrt{(2{\rm MSE/r})} = 0.0093398 \\ {\rm Detectable \ difference} = ({\rm FPLSD/Grand \ mean})100 = 25.2\% \end{array}$

1990	Releases

ANOVA Table

	3	Treatm	ents 10 Block	8	
	Sum of		Mean		Signif.
	squares	D.F .	square	F	level
Blocks	0.001141	9	0.000127		
Treat	0.000075	2	0.000037	1.498	0.2501
Error	0.000449	18	0.000025		
Total	0.001665	29			

			Homogeneous
Treatment	Count	Mean	groups
Mid-level turb.	10	0,0095	1
Bypass	10	0.0131	1
Tailrace	10	0.0125	1
Grand mean		0.01169	

 $FPLSD = t_{(\alpha=0.05)(df=18)} \sqrt{(2MSE/r)} = 0.00465.$

Detectable diff.= (FPLSD/Grand mean)100 = 39.8%

ANOVA Table

2	2 Treatments 21 Blocks									
Sum of		Mean		Signif.						
squares	D.F.	square	F	level						
0.003559	20	0.000178								
0.000122	1	0.000122	2.999	0.0987						
0.000816	20	0.000041								
0.004498	41									

<u>م</u>

Æ h

		Homogeneous
Count	Mean	groups
21	0.01349	1
<u>21</u>	0.01690	1
	0.01520	

 $FPLSD = t_{(a=0.05)(df=20)} \sqrt{(2MSE/r)} = 0.004066$

Detectable diff.= (FPLSD/Grand mean)100 = 26.7%

Homogeneous groups are identified by a common number.

Appendix Table 2.--Distribution of observed adult recoveries by age and location for URB fall chinook salmon released as juveniles during 1987 to evaluate passage survival at Bonneville Dam. PSMFC database listings through 2 February 1992 and rack recoveries during 1991 at Bonneville, Cascade, and Little White Salmon Hatcheries.

	1	Number	of recap	tures at	age	Rec by l	aptures ocation
Recapture location	2 (1988)	3 (1989)	4 (1990)	5 (1991)	6 (1992)	Reca by lo 	%
Release location: All							
Number released: 1,720,385							
Ocean sport fishery, Alaska	1	3	3	0"		7	0.2
Ocean net fishery, Alaska	16	5	7	0ª		28	0.7
Ocean troll fishery, Alaska	0	14	380	0*		394	9.5
Ocean sport fishery, British Columbia	0	6	6	0•		12	0.3
Ocean net fishery, British Columbia	37	28	26	0"		91	2.2
Ocean troll fishery, British Columbia	2	85	345	0 *		432	10.4
Ocean sport fishery, Washington	3	21	17	3		44	1.1
Ocean net fishery, Washington	0	14	0	0		14	0.3
Ocean troll fishery, Washington	1	13	21	0		35	0.8
Ocean sport fishery, Oregon	1	0	3	1		5	0.1
Ocean troll fishery, Oregon	1	7	2	10		20	0.5
Ocean fishery, California	0	0	0	3		3	0.1
Columbia R. sport fishery, Oregon	0	6	0	0		6	0.2
Columbia R. sport fishery, Washington	0	0	4	2		6	0.2
Columbia R. net fishery, Youngs Bay	0	5	5	0		10	0.2
Columbia R. net fishery, Zones 1-5	3	144	239	221		607	14.7
Columbia R. net fishery, Zone 6 (fall)	5	114	603	329		1,051	25.4
Stream survey, Big White Salmon River, CRM 168.	30	2	1	0ª		3	0.1
Stream survey, Umatilla River, CRM 288.8	0	2	1	0ª		3	0.1
Stream survey, Columbia River, CRM 361.7	0	0	3	0ª		3	0.1
Columbia R., Bonneville Hatchery, CRM 144.5	102	267	312	19 5		876	21.2
Columbia R., Cascade Hatchery, CRM 146.0	65	46	1	1		113	2.7
Columbia R., Little White Salmon NFH, CRM 161.	1 23	61	110	129		323	7.8
Columbia R., Spring Creek NFH, CRM 166.5	1	0	4	0		5	0.1
Columbia R., Priest Rapids Hatchery, CRM 397.1	4	0	3	0"		7	0.2
Snake R., Lyons Ferry Hatchery, SRM 58.0	1	16	16	0,		33	0.8
Umatilia K., 3-Mile Trap Quinault R. sport fishery, Washington	0	2 0	0	0. 1		2	-
Totals	266	861	2,112	895		4,134	100.0

* Coded-wire-tag recoveries for 1991 not complete.

A

A

6

1

Appendix Table 3.--Distribution of observed adult recoveries by age and location for URB fall chinook salmon released as juveniles during 1988 to evaluate passage survival at Bonneville Dam. PSMFC database listings through 2 February 1992 and rack recoveries during 1991 at Bonneville, Cascade, and Little White Salmon Hatcheries.

	1	Number	of recap	tures at	age	Reca by le	ptures ocation
Recapture location (19		2 3 39) (1990)	4 (1991)	5 (1992)	6 (1993)	No.	%
Release location: All Number released: 1,777,396							
Ocean sport fishery, Alaska	0	0	0*			0	0.0
Ocean net fishery. Alaska	2	0	0"			2	0.7
Ocean troll fishery, Alaska	0	12	0•			12	4.2
Ocean sport fishery, British Columbia	0	0	0•			0	0.0
Ocean net fishery, British Columbia	4	5	0*			9	3.2
Ocean troll fishery, British Columbia	0	17	0ª			17	6.0
Ocean sport fishery, Washington	0	5	1			6	2.1
Ocean net fishery, Washington	0	0	0			0	0.0
Ocean troll fishery, Washington	0	2	0			2	0.7
Ocean sport fishery, Oregon	0	1	0			1	0.4
Ocean troll fishery, Oregon	0	3	0			3	1.1
Ocean fishery, California	0	0	0			0	0.0
Columbia R. sport fishery, Oregon	0	0	0			0	0.0
Columbia R. sport fishery, Washington	0	· O	0			0	0.0
Columbia R. net fishery, Youngs Bay	0	0	0			0	0.0
Columbia R. net fishery, Zones 1-5	2	6	21			29	10.3
Columbia R. net fishery, Zone 6 (fall)	0	29	51			80	28.4
Stream survey, Big White Salmon River, CRM 168.3	3 0	0	0ª			0	0.0
Stream survey, Umatilla River, CRM 288.8	0	0	0 ª			0	0.0
Stream survey, Columbia River, CRM 361.7	0	0	0 *			0	0.0
Columbia R., Bonneville Hatchery, CRM 144.5	11	30	33			74	26.2
Columbia R., Cascade Hatchery, CRM 146.0	9	2	0			11	3.9
Columbia R., Little White Salmon NFH, CRM 161.1	7	10	13			30	10.6
Columbia R., Spring Creek NFH, CRM 166.5	0	0	0			0	0.0
Columbia R., Priest Rapids Hatchery, CRM 397.1	0	1	0*			1	0.4
Snake R., Lyons Ferry Hatchery, SRM 58.0	2	2	0*			4	1.4
Umatilla R., 3-Mile Trap	0	1	0 *			1	0.4
Quinault R. sport fishery, Washington	0	0	0			0	0.0
Totals	37	126	119	r		282	100.0

* Coded-wire-tag recoveries for 1991 not complete.

A

<u>A</u>

Appendix Table 4.--Distribution of observed adult recoveries by age and location for URB fall chinook salmon released as juveniles during 1989 to evaluate passage survival at Bonneville Dam. PSMFC database listings through 2 February 1992 and rack recoveries during 1991 at Bonneville, Cascade, and Little White Salmon Hatcheries.

	1	Recapture by locatio					
Recapture location Release location: All Number released: 2,123,383 Ocean sport fishery, Alaska Ocean net fishery, Alaska Ocean net fishery, Alaska Ocean net fishery, British Columbia Ocean net fishery, British Columbia Ocean net fishery, British Columbia Ocean net fishery, British Columbia Ocean troll fishery, British Columbia Ocean sport fishery, Washington Ocean troll fishery, Washington Ocean troll fishery, Oregon Ocean fishery, California Columbia R. sport fishery, Oregon Columbia R. sport fishery, Yuans Bay Columbia R. net fishery, Zones 1-5 Columbia R. net fishery, Zones 1-5 Columbia R. net fishery, Zone 6 (fall) Stream survey, Big White Salmon River, CRM 166 Stream survey, Columbia River, CRM 361.7 Columbia R., Cascade Hatchery, CRM 144.5 Columbia R., Spring Creek NFH, CRM 166.5 Columbia R., Spring Creek NFH, CRM 166.5 Columbia R., Priest Rapids Hatchery, CRM 397.1 Snake R., Lyons Ferry Hatchery, SRM 58.0 Umatilla R., 3-Mile Trap Quinault R. sport fishery, Washington	2 (1990)	3 (1991)	4 (1992)	5 (1993)	6 (1994)	No.	%
Release location: All							
Number released: 2,123,383							
Ocean growt fishers, Alaska	0	0*				'n	0.0
Ocean pet fishery, Alaska	5	0*				5	0.0
Ocean troll fishery Alaska	0	0*				0	0.0
Ocean mont fighery Britigh Columbia	Ő	0*				Ő	0.0
Ocean net fishery, British Columbia	37	0"				37	4.7
Ocean troll fishery. British Columbia	0	0°				0	0.0
Ocean sport fishery. Washington	2	1	-			3	0.4
Ocean net fishery, Washington	0	0				0	0.0
Ocean troll fishery, Washington	0	0				0	0.0
Ocean sport fishery, Oregon	0	1				1	0.1
Ocean troll fishery, Oregon	0	1				1	0.1
Ocean fishery, California	0	0				0	0.0
Columbia R. sport fishery, Oregon	0	0				0	0.0
Columbia R. sport fishery, Washington	1	0				1	0.1
Columbia R. net fishery, Youngs Bay	0	0				0	0.0
Columbia R. net fishery, Zones 1-5	6	82				88	11.1
Columbia R. net fishery, Zone 6 (fall)	26	70				96	12.1
Stream survey, Big White Salmon River, CRM 16	8.3 0	0ª				0	0.0
Stream survey, Umatilla River, CRM 288.8	0	0ª				0	0.0
Stream survey, Columbia River, CRM 361.7	0	0ª				0	0.0
Columbia R., Bonneville Hatchery, CRM 144.5	181	212				393	49.7
Columbia R., Cascade Hatchery, CRM 146.0	73	11				84	10.6
Columbia R., Little White Salmon NFH, CRM 161	l.1 38	40				78	9.9
Columbia R., Spring Creek NFH, CRM 166.5	0	0				0	0.0
Columbia R., Priest Rapids Hatchery, CRM 397.1	1	0-				I	0.1
Snake K., Lyons Ferry Hatchery, SKM 58.0	U	0-				U o	0.0
Umatilia K., 3-Mile Trap Opinopult R. sport fishery. Weshington	3	U- 0				ა ი	0.4
Quinaule 16. spore instiery, washingwit			<u></u>				
Totals	373	418				791	100.0

* Coded-wire-tag recoveries for 1991 not complete.

A

1

1

1

A,

1

Appendix Table 5.--Distribution of observed adult recoveries by age and location for URB fall chinook salmon released as juveniles during 1990 to evaluate passage survival at Bonneville Dam. PSMFC database listings through 2 February 1992 and rack recoveries during 1991 at Bonneville, Cascade, and Little White Salmon Hatcheries.

	Number of recaptures at age						aptures ocation
Recapture location	2 (1991)	3 (1992)	4 (1993)	5 (1994)	6 (1995)	No.	%
Release location: All							
Number released: 1,724,847							
Ocean sport fishery. Alaska	0ª					0	0.0
Ocean net fishery. Alaska	0*					0	0.0
Ocean troll fishery, Alaska	0*					0	0.0
Ocean sport fishery, British Columbia	0*					0	0.0
Ocean net fishery, British Columbia	0"					0	0.0
Ocean troll fishery, British Columbia	0*					0	0.0
Ocean sport fishery, Washington	0					0	0.0
Ocean net fishery, Washington	0					0	0.0
Ocean troll fishery, Washington	0					0	0.0
Ocean sport fishery, Oregon	0					0	0.0
Ocean troll fishery, Oregon	0					0	0.0
Ocean fishery, California	0					0	0.0
Columbia R. sport fishery, Oregon	0					0	0.0
Columbia R. sport fishery, Washington	0					0	0.0
Columbia R. net fishery, Youngs Bay	0					0	0.0
Columbia R. net fishery, Zones 1-5	16					16	6.1
Columbia R. net fishery, Zone 6 (fall)	8					8	3.1
Stream survey, Big White Salmon River, CRM 168	.3 0"					0	0.0
Stream survey, Umatilla River, CRM 288.8	0*					0	0.0
Stream survey, Columbia River, CRM 361.7	0 *					0	0.0
Columbia R., Bonneville Hatchery, CRM 144.5	108					108	41.4
Columbia R., Cascade Hatchery, CRM 146.0	82					82	31.4
Columbia R., Little White Salmon NFH, CRM 161.	1 47					47	18.0
Columbia R., Spring Creek NFH, CRM 166.5	0					0	0.0
Columbia R., Priest Rapids Hatchery, CRM 397.1	0"					0	0.0
Snake R., Lyons Ferry Hatchery, SRM 58.0	0 *					0	0.0
Umatilla R., 3-Mile Trap	0*					0	0.0
Quinault R. sport fishery, Washington	0					0	0.0
	261					261	100.0

• Coded-wire-tag recoveries for 1991 not complete.

A

1

P

	comparisons of Bonneville survival study to other releases of URB fall chinook salmon, 1987-1990.													
	CWT recovery data sets available in PSMFC recovery files													
Ye	ar				Recov	very agei	ncy ^b							
	CDFG	ODFW	WDF	WDW	IDFG	CDFO	ADFG	FWS	NMFS (AK)	NIFC	QDNR	METL		
87	v	v	v	I	NR	v	v	v	S	v	v	I		
88	v	v	v	I	NR	v	v	v	NR	v	v	I		
89	v	v	v	I	NR	v	v	Ι	NR	v	v	I		
90	v	v	v	NR	NR	v	v	v	NR	v	S	I		
91	Ι	I	I	I	NR	I	I	NR	NR	NR	NR	I		

I = Incomplete data set, but available data are validated and online. V = Fully (finalized) validated and online data set. S = Submitted but not yet validated data set. NR = Not reported at this time in PSMFC format.
CDFC = Colifernia Dept. of Fish and Come: ODFW = Oregon Dept. of Fish and Wildlife: N

CDFG = California Dept. of Fish and Game; ODFW = Oregon Dept. of Fish and Wildlife; WDF = Washington Dept. of Fisheries; WDW = Washington Dept. of Wildlife; IDFG = Idaho Dept. of Fish and Game; CDFO = Canadian Dept. of Fisheries and Oceans; ADFG = Alaska Dept. of Fish and Game; FWS = U.S. Fish and Wildlife Service; NMFS = National Marine Fisheries Service; AK = Alaska; NIFC = Northwest Indian Fisheries Commission; QDNR = Quinault; METL = Metlakatla.

INCOMPLETE DATA SETS

1) WDW's recoveries in the mainstem Columbia River have been reported through ODFW.

However, recoveries in Columbia River basin tributaries and Puget Sound are unreported.

2) Metlakatla (METL) has reported recoveries for its fisheries through ADFG. However, hatchery returns are unreported at this time.

Appendix Table 6.--Status of PSMFC recovery data (as of 19 May 1992) used for

A

3

.....

æ

Appendix Table 7.--Coded-wire-tag codes of marked groups used for adult recovery comparisons (Table 4)^a of Bonneville survival study to other releases of URB fall chinook salmon, 1987-1990.

1987 Releases 232053, 58, 60, 63, 2105, 10, 15, 17, 20, 25, 30, 35, 37, 40, 45, 50, 55, 57, 60, 2202, 07, 12, 14, 17, 22 074719, 21, 37, 38 074722, 25 074732, 35 074741, 42 074315, 16, 17, 18 074129, 4309, 19, 20 633315 073912, 13, 14 B50101, 02, 03, 04, 05, 06, 0201, 02, 0713, 14, 634259, 61 634262, 4401 051915, 19, 20, 21 051916, 17, 18 051922 634128 **1988 Releases** 232504, 14, 25, 35, 44, 55, 52, 2601, 11, 21, 31, 41, 50 074254 074303 074304 073555 075007 B50107, 0615, 0708, 09, 10, 11, 12, 15 0501010101, 02, 03 635211, 13, 14, 16 635232 635226 **1989 Releases** 232801, 13, 25, 37, 49, 61, 3108, 21, 32, 44, 56, 3204 075030, 33 075034, 36 074646, 47, 48 074753, 54, 57, 58, 60, 63 0501010205,06 0501010202, 03, 04 635249 635252 630226, 28 635204, 07 **1990 Releases** 232453, 56, 59, 62, 2505, 10, 17, 23, 29, 34, 40, 46, 53, 58, 2603, 09, 15, 20, 27, 33, 39 075408, 09 075406, 07 052337, 38 630416, 631459 075403, 04, 05 075322, 23, 24, 25, 26, 27 0501010207, 11 and, 052120 0501010208, 09, 10 630732 630755 635544, 47, 49,50

• Coded-wire-tag codes listed in each row represent the combined groups used for comparison in Table 4. The order of groups is the same on both tables.

1

æ

æ

۴

4

P