Continued Studies to Evaluate the Juvenile Bypass Systems at Bonneville Dam-1989

by Michael H. Gessel Dean A. Brege, Bruce H. Monk and John G. Williams

April 1990

CONTINUED STUDIES TO EVALUATE THE JUVENILE BYPASS SYSTEMS AT BONNEVILLE DAM - 1989

by

Michael H. Gessel Dean A. Brege Bruce H. Monk and John G. Williams

Annual Report of Research Funded by U.S. Army Corps of Engineers Portland District E8689095

and

Coastal Zone and Estuarine Studies Division Northwest Fisheries Center National Oceanic and Atmospheric Administration 2725 Montlake Boulevard East Seattle, Washington 98112

April 1990

CONTENTS

INTRODUCTION	1
OBJECTIVE 1 - EVALUATION OF MODIFICATIONS TO IMPROVE FISH GUIDANCE EFFICIENCY AT BONNEVILLE II	2
Approach	2
Results and Discussion	7
Yearling Chinook Salmon	7
Subyearling Chinook Salmon	10
OBJECTIVE 2 - FISH GUIDANCE EFFICIENCY AND VERTICAL DISTRIBUTION TESTS AT BONNEVILLE I	11
Approach	11
Results and Discussion	11
Yearling Chinook Salmon	11
Subyearling Chinook Salmon	12
Coho Salmon and Steelhead	15
CONCLUSIONS	17
Bonneville II	17
Bonneville I	17
RECOMMENDATIONS	18
Bonneville II	18
Bonneville I	18
LITERATURE CITED	19
APPENDIX	21

INTRODUCTION

Research at Bonneville Dam Second Powerhouse (Bonneville II) began in 1983 with the evaluation of the fingerling collection and bypass system. In these studies, fish guiding efficiency (FGE) was between 20 and 25% for yearling chinook salmon, far less than the 70% or greater at Bonneville Dam First Powerhouse (Bonneville I) and much below the 70% guidance standard considered by the Columbia Basin Fish and Wildlife Authority as the minimum level needed for adequate fish passage. Research in 1985 indicated that streamlined trashracks and lowered submersible traveling screens (STSs) could increase FGE to >40% for yearling chinook salmon. Research in 1986 and 1987 resulted in some FGE estimates >70% when using turbine intake extensions (TIEs) combined with earlier modifications. Tests in 1988 with submerged bar screens (SBSs) resulted in increased FGE; however, descaling of juvenile salmonids during testing was unacceptable. Also in 1988, mercury vapor lights attached to the intake ceiling and STS frame increased FGE, but results were inconsistent.

Initial studies of FGE with prototype STSs at Bonneville I were conducted during the early and late portions of the 1981 juvenile salmonid spring outmigration. Guidance estimates >70% were observed for all species tested (Krcma et al. 1982). Based on these results and information obtained at similar projects, a full complement of STSs was installed at the powerhouse in 1984. Subsequent research on summer migrating subyearling chinook salmon at John Day Dam (Krcma et al. 1986; Brege et al. 1987) and McNary Dam (Brege et al. 1988) indicated guidance ranged from 25 to 45%, varying both during the season and from year to year. Because of these poor results, FGE was measured for the first time during the 1988 summer outmigration at Bonneville I to determine baseline guidance levels prior to installation of a floating guidewall for the new Bonneville Dam navigation lock. Fish guidance was <12% (Gessel et al. 1989), which was much lower than the 70% average for subyearling chinook salmon measured during May 1981 (Krcma et al. 1982).

During the 1989 juvenile salmonid outmigration, the National Marine Fisheries Service (NMFS) conducted studies at both Bonneville Dam powerhouses with the following objectives:

- 1) Continue FGE and vertical distribution testing at Bonneville II to evaluate the following modifications or additions for improving FGE and STS effectiveness in conjunction with TIEs (Fig. 1):
 - a. Raised operating gate
 - b. Bar screens
 - c. Perforated plate with bar screens to reduce descaling
 - d. Illuminated guiding device
- 2) Continue FGE and vertical distribution testing at Bonneville I to more accurately assess FGE and STS effectiveness over the spring and summer juvenile salmonid outmigration prior to construction of the navigation lock guidewall.

OBJECTIVE 1 - EVALUATION OF MODIFICATIONS TO IMPROVE FISH GUIDANCE EFFICIENCY AT BONNEVILLE II

Approach

Fish guidance and vertical distribution studies were conducted with existing fyke nets and net frames. Procedures and methodologies were similar to those used at Bonneville II in 1985, 1986, 1987, and 1988 (Gessel et al. 1986, 1987, 1988, 1989). A dipbasket collected guided fish from the gatewell and a net frame attached to the guiding device (traveling screen or bar screen) supported nets to collect unguided fish.

Figure 1.--Cross-sectional view of a turbine intake with turbine intake extension, operating gate, and lights tested at Bonneville Dam Second Powerhouse, 1989.

Fish guidance efficiency is the percentage of fish (by species) entering the turbine intake that are guided by the STS out of the intake and into the gatewell for a specific test condition, as follows:

FGE = GW / (GW + GN + FN + CN) x 100 GW = gatewell catch GN = gap net catch FN = fyke net catch¹ CN = closure net catch

We planned five replicates of each test condition. Each replicate required 250-300 fish of the target species. The desired number of replicates was not always attained because of the variety of test conditions and the relatively short field season. Data for unreplicated tests are presented as possible trend indicators, not for statistical analysis.

Whenever possible, FGE tests were conducted with concurrent vertical distribution tests. Vertical distribution provided estimated depth distribution of fish within the turbine intakes. These data were used to determine theoretical FGE (TFGE) which was the percentage of guidable fish entering the turbine intake during an FGE test. Generally, this included all fish collected from the gatewell down to and including the upper half of the third net on the vertical distribution frame. Dividing FGE by the corresponding TFGE provided an indication of STS or bar screen effectiveness for the various test conditions. This information allowed us to compare test conditions even when TFGE estimates varied.

Vertical distribution was based on an estimate of the total number of fish entering the turbine intake. The sum of the catch at the various net levels plus the gatewell catch gave an estimate of the total number of fish during each test. To minimize the number of fish captured in the nets, only the center portion of each net level collected fish, and the number of fish captured was expanded by a factor of 3.

¹Net catches with only a middle net were expanded by a factor of 3.

The percentage of fish at each net level was determined by dividing the computed figure for each net level by the estimated total intake catch.

Fish guidance and concurrent vertical distribution testing occurred during the spring (22 April to 4 June) and summer (8 to 28 July) smolt migrations targeting on yearling and subyearling chinook salmon, respectively. Data for other species were collected as available. Subyearling chinook salmon were also captured during late May-June. Guidance for these fish is generally higher than that for late summer migrants and can approach FGEs of yearling chinook salmon (Krcma et al. 1982; Gessel et al. 1988, 1989). However, the major portion of the wild subyearling smolt migration passes Bonneville Dam during the late summer. Subvearling chinook salmon passing during the spring are almost entirely from Spring Creek Hatchery just 20 km upstream from the dam. For these reasons and to remain consistent with past Bonneville Dam reports, we will continue to separate and designate yearling chinook and coho salmon as the early phase fish and subyearling chinook salmon as the late phase fish. All tests began at approximately 2000 h and generally lasted from 1 to 2 hours, depending upon fish numbers. Tests during the spring were conducted with a unit discharge of 16,500 to 17,500 cfs. Late summer tests were conducted at 14,000-15,000 cfs due to lower tailwater levels and higher unit heads. Four units (11, 12, 13, and 18) were operated during all tests. The FGE tests were conducted in Slots 12A and 12B (the majority in 12B, which was equipped with a TIE) while vertical distribution was measured in Slot 13A (also equipped with a TIE). Individual test conditions are specified in Table 1. Lights used to modify fish behavior to increase FGEs or decrease descaling were either 250-watt mercury vapor (12,000-13,000 lumens/light) mounted on the frame of the guiding device and positioned near the gatewell entrance or xenon

5

Table 1.--Submersible traveling screen and bar screen fish guidance efficiency tests conducted at Bonneville Dam Second Powerhouse during the 1989 field season. All testing occurred with four turbine units operating (11, 12, 13, and 17 or 18).

Test series no.	Date of tests	Test unit	Load kcfs	Guiding device	Light condition	Operating gate
1	25,27,29 April 1,3,6,8 May	12B	17.5	Bar Screen with perforated plate and 26-in solid section	No lights	Standard
2	26,28,30 April 2,4,5,7 May	1 2B	17.5	Bar screen with perforated plate and 26-in solid section	No lights	Raised 25 ft
3	9,10 May	1 2B	17.5	Bar screen with 2/3 perf. plate	No lights	Standard
4	11,12,13,14 May	12 B	17.5	Bar screen with 4/5 perf. plate	No lights	Standard
5	15,16,17 May	12 B	17.5	Bar screen with 4/5 perf. plate	No lights	Standard
	15,16,17 May	12 A	17.5	Traveling screen	No lights	Standard
6	26,28,30 May 1,3 June	12 B	17.5	Bar screen with 4/5 perf. plate	No lights	Standard
	26,28,30 May 1,3 June	12A	17.5	Traveling screen	No lights	Standard
7	27,29,31 May 2,4 June	12 B	17.5	Traveling screen	No lights	Standard
	27,29,31 May 2,4 June	12A	17.5	Bar Screen with 4/5 perf. plate	No lights	Standard
8	8, 12,14,18 20,24 July	12 B	14-15	Bar screen with 4/5 perf. plate	Four lights mounted on frame in gateslot	Standard
	8,12,14,18 20,24 July	12 A	14-15	Traveling screen	Four lights mounted on frame in gateslot	Standard
9	13,17,19,21 25,26 July	12B	14-15	Bar screen with 4/5 perf. plate	No lights	Standard
	13,17,19,21 25,26 July	1 2A	14-15	Traveling screen	No lights	Standard
10	27,28 July	12 B	14-15	Bar screen with 4/5 perf. plate	No lights	Standard
	27,28	1 2A	1 4- 15	Bar screen no perforated plate	Flashing lights on trashrack (3)	Standard

strobes mounted behind the guiding device (producing 15 joules with a flash rate of one every 2 seconds and a duration of 2 milliseconds).

Fish condition (descaling) was monitored by examining fish captured in the gatewell. Descaling was determined by dividing the fish into five equal areas per side; if any two areas on a side were estimated to be 50% or more descaled, the fish was classified as descaled.

Results and Discussion

Tests at Bonneville II were conducted from 23 April to 4 June with yearling chinook salmon as the target species and from 8 to 28 July with subyearling chinook salmon as the target species. Table 1 and Appendix Tables 1 and 2 provide detailed recapture information for all species.

Yearling Chinook Salmon

Test Series 1 and 2 were alternated in a cross-over test design to determine whether the raised operating gate would increase guidance at Bonneville II. Similar tests conducted at this powerhouse were inconclusive (Gessel et al. 1985, 1986). In 1989, guidance was 43.6% with the raised gate and 41.0% with the standard gate (Table 2) (data were weighted by number of fish captured). The paired t-test (t = 0.88, P > 0.05) indicated no significant difference between the two tests.

Portions of the perforated plate were removed from the bar screen to determine the optimum porosity of the bar screen to minimize descaling (Test Series 3 and 4). Also, solid plate (26 in) was attached to the downstream end of the bar screen. The STS, bar screen, and bar screen with perforated plate had estimated porosities of 25, 48, and 33%, respectively. Removing a portion of the perforated plate increased the overall porosity somewhat. The use of perforated plate and a solid section on the back of the bar screen reduced descaling rates to approximately the same as the STS (Table 3).

7

Test [*] series	Number of reps.	Chinook salmon	Guidance device	Lights	FGE	Guidance <u>effective</u> Mean	device eness S.E.
1	7	Yearling	BS⁵	OFF	41.0	57.7	5.6
2	7	Yearling	BS⁵	OFF	43.6	61.1	5.1
3	2	Yearling	BS°	OFF	63.5	73.9	1.8
4	4	Yearling	BS⁴	OFF	56.4	76.7	4.5
5	3	Yearling	BS⁴	OFF	65.3	87.0	8.6
	3	Yearling	STS.	OFF	78.4	ſ	
6	5	Yearling	BS⁴	OFF	g		
	5	Yearling	STS	OFF	g		
7	5	Yearling	STS	OFF	g		
	5	Yearling	BS⁴	OFF	5		
8	6 6	Subyearling Subyearling	BS⁴ STS	ON ON	25.3 23.4	58.4 54.1	4.4 6.4
9	6	Subyearling	BS⁴	OFF	25.1	59.7	6.8
	6	Subyearling	STS	OFF	21.7	52.2	4.2
10	2	Subyearling	BS⁴	OFF	23.4	57.2	8.5
	2	Subyearling	$\mathbf{BS}^{\mathtt{h}}$	ON	27.8	ſ	

Table	2Results	of the	fish guid	lance effi	iciency ((FGE) t	tests	conducted	at	Bonneville
	Dam Se	cond F	Powerhou	se during	g the 19	989 field	d sea	son.		

* Test series numbers correspond to Table 1, this report.

^b Bar screen with perforated plate and 26-in solid section.

^c Bar screen with 2/3 perforated plate and solid section (exact porosity unknown).

^d Bar screen with 4/5 perforated plate and solid section (exact porosity unknown).

• Submersible traveling screen.

^f Test conducted without the turbine intake extension (TIE), no comparable vertical distribution.

^s No FGE calculated because small numbers of fish (<100 per replicate) for most replicates.

^h No perforated plate behind bar screen.

Dates	Gateslot 12B (%)	Gateslot 12A (%)	Gateslot 13A• (%)	
22 April- 6 May	5.5 ^b	12.7°	4.0	
7-8 May	9.5⁵	9.5 ^d	8.4	
9-10 May	17.0•	13.1 ^d	13.4	
11-17 May	9.5 ^r	10.4 ^d	5.9	

Table 3.--Descaling results for yearling chinook salmon compiled during fish guidance efficiency tests conducted at Bonneville Dam Second Powerhouse during the 1989 field season.

Vertical distribution gateslot, no guiding device.
Bar screen with perforated plate and 26-in solid section.
Bar screen only, no perforated plate.

^d STS

• Bar screen with 2/3 perforated plate and solid section. • Bar screen with 4/5 perforated plate and solid section.

Test Series 5 compared the best bar screen and perforated plate configuration with the STS. A cross-over design was not used at this time because of insufficient test days. Weighted FGE results were 78.4% (STS in 12A) and 65.3% (bar screen in 12B). These results were similar to 1987 tests that compared the STS in 12A and 12B (FGE of 72.1 and 60.0%, respectively) (Gessel et al. 1988).

A cross-over test was conducted under the above conditions in late May early June (Test Series 6 and 7), but yearling chinook salmon numbers were too low for statistical evaluation.

As in past years with TIEs in the alternate configuration, FGEs in Unit 12 were higher in the slot without the TIE. Additionally, the number of fish entering the slot without the TIE was 2-3 times higher than in the adjacent slot with a TIE. Thus the overall FGE for the unit was weighted toward the higher FGE obtained from the non-TIE slots.

Subyearling Chinook Salmon

We conducted six test replicates to determine if there was a difference in guidance between the STS or a bar screen with perforated plate and solid plate (Table 2, Series 8 and 9). We also tested these conditions with addition of mercury vapor lights. Average guidance (weighted for fish numbers) for the bar screen was 25.3 and 25.1% (with and without lights) and for the STS was 23.4 and 21.7% (with and without lights). Effectiveness of the bar screen (tested in 12B) with and without the lights was 58.4 and 59.7%, respectively. Guidance was not increased when flashing lights (xenon strobe) were placed behind the bar screen without perforated plate (Test Series 10); however, descaling rose from 9 to 23%. We believe the lights attracted migrants to the bar screen, and without perforated plate, the screen increased descaling.

OBJECTIVE 2 - FISH GUIDANCE EFFICIENCY AND VERTICAL DISTRIBUTION TESTS AT BONNEVILLE I

Approach

Vertical distribution and FGE procedures used at Bonneville I were identical to those used at Bonneville II. Dipbaskets collected fish from the gatewell, and net frames collected fish from the turbine intake. Testing occurred during the spring outmigration, targeting yearling chinook salmon and during the summer outmigration, targeting subyearling chinook salmon. Data for other species were collected as available. All testing occurred in Unit 3B, with approximately one vertical distribution test for every three FGE tests. Concurrent FGE and vertical distribution tests were not conducted to minimize the number of fish sacrificed in the nets.

A standard elevation STS was used for all FGE tests; therefore, TFGE was estimated to be all fish from the gatewell down to and including fish in the second net level of the vertical distribution frame.

Standard unit operation prevailed with all available units operating at full load. Unit flows ranged from 14,000 to 14,500 cfs in the spring and from 10,200 to 12,700 cfs in the summer.

Results and Discussion

Tests at Bonneville I were conducted from 8 to 14 May with yearling chinook salmon as the target species and from 27 to 30 May and 12 to 24 July with subyearling chinook salmon as the target species. Appendix Tables 3 and 4 provide detailed recapture information for all species.

Yearling Chinook Salmon

Six replicate tests were conducted, and the total number of yearling chinook salmon recaptured per test ranged from 141 to 236. Guidance for the six replicates ranged from 34.7 to 49.6%, with a weighted mean of 41.7% (S.E. = 2.2). The

corresponding TFGE was 69.6% (S.E. = 3.2), and screen effectiveness was 60.8% (Fig 2). This was the first time since 1981 that FGE and vertical distribution were measured for yearling chinook salmon at Bonneville I. Between 11 and 13 May in 1981, the weighted average FGE was 83.6% (in Unit 4 with a screen angle of 53°), and the concurrent TFGE (in Gatewells 5A and 5B) was 85.0%, with an overall screen effectiveness of 98.0% (Krcma et al. 1982). Therefore, the lower FGE in 1989 was due to a lower vertical distribution of fish as they entered the turbine intake (Fig. 3) and a decrease in screen effectiveness of 37% compared with 1981.

The lowered vertical distribution in 1989 could have resulted from a number of factors. As a result of dredging for the new navigation lock, the upstream tip of Bradford Island was removed and seven rock groins were placed in the upstream approach to the navigation lock. These two actions straightened the flow approaching the north side of the powerhouse, removed some of the larger eddies, and distributed the flow across the entire powerhouse. Possibly increased squawfish populations in the forebay caused fish to move deeper to avoid predation.

The descaling rate on yearling chinook salmon ranged from 2.9 to 10.3% and averaged 6.6%.

Subyearling Chinook Salmon

During the first subyearling chinook salmon FGE and vertical distribution tests (27 to 30 May), only 76 to 111 fish were recovered per test. This was fewer fish than preferred. The results, however, indicated the range of FGEs and TFGEs for late spring migrating subyearling chinook salmon. The FGEs for the four replicates ranged from 31.0 to 50.0% with a weighted mean of 36.8% (S.E. = 4.3) compared with 40.7% FGE in 1988 during the same period (Gessel et al. 1989). The TFGE for the one vertical distribution test was 63.6%.

12

Figure 2.--Fish guidance efficiency (FGE) and theoretical fish guidance efficiency (TFGE) for yearling chinook salmon at Bonneville First Powerhouse, 1989.

Figure 3.--Cumulative weighted average vertical distribution of chinook salmon at Bonneville Dam First Powerhouse, 1981 and 1989.

During the summer testing (12 and 24 July), the total number of fish ranged from 305 to 613. The weighted average for the corresponding FGEs and TFGEs were 4.4 (S.E. = 1.0) and 11.5% (S.E. = 4.5), respectively (Fig. 4).

The 1989 subyearling chinook salmon tests confirmed that the low FGEs found in 1988 were not an anomaly (Gessel et al. 1989). During both years, FGEs for spring migrating subyearling chinook salmon were about 40% and by the latter part of July had decreased substantially (to 11.4% in 1988 and 4.4% in 1989). A decline in subyearling chinook salmon guidance from late spring through summer has also been noted at other dams on the Columbia River and has been attributed to: 1) changing environmental factors such as water temperature, turbidity, or flow or 2) changing composition of the migrating population (Krcma et al. 1985; Monk et al. 1986; Brege et al. 1988). Based on observations in the immediate forebay at Bonneville I, we also speculate that northern squawfish predation may decrease the number of potentially guidable fish. Migrants may sound to avoid predators or guidable migrants may be eaten by predators.

Descaling varied between spring and summer tests. There were no descaled subyearling chinook salmon collected from the gatewell during the spring testing. However, from 12 to 24 July the descaling rate ranged from 0 to 10.5% with a weighted average of 5.1%. Possibly the summer migrants were more highly smolted than the spring released hatchery fish.

Coho Salmon and Steelhead

Although not the target species, during the first two series of tests (9 May to 14 May and 27 to 30 May), coho salmon and steelhead were also caught. The total number of coho salmon per test ranged from 44 to 205. The weighted average FGE and TFGE for coho salmon for these tests was 63.0 and 80.5%, respectively. During the same period, the FGE and TFGE for steelhead averaged 55.8 and 72.7%,

15

Figure 4.--Fish guidance efficiency (FGE) and theoretical fish guidance efficiency (TFGE) for subyearling chinook salmon at Bonneville First Powerhouse, 1989.

respectively, with the recovery of fish ranging from 55 to 118 total per test. These results compared with 1981 FGE estimates of 81.3 and 77.6% for coho salmon and steelhead, respectively.

CONCLUSIONS

Bonneville II

1) Raising the operating gate will not significantly increase FGE.

- Addition of perforated plate to the back of the bar screen is necessary to decrease screen porosities below 40% and attain levels of descaling comparable to STSs; however, this will also reduce guidance.
- 3) Mercury vapor lights attached to the frame of the guidance device will not significantly increase guidance or decrease descaling for subyearling chinook salmon.

Bonneville I

- 1) Based on tests conducted in Unit 3, fish guidance efficiency for yearling chinook salmon in 1989 decreased substantially from 1981 (41 versus 81%, respectively).
- 2) The 4.4% guidance during summer 1989 for subyearling chinook salmon was not an anomaly. As in 1988, summer subyearling chinook salmon guided poorly and fish moved deeper as the migration progressed.

RECOMMENDATIONS

Bonneville II

 To provide a configuration that will result in the highest FGEs attainable at this time; install 1) TIEs in an alternate configuration across the face of the powerhouse,
 2) lowered STSs, and 3) streamlined trashracks

Bonneville I

- 1) Additional studies are required to determine if all units at the powerhouse exhibit the low guidance levels found in Unit 3.
- 2) Test a raised operating gate to determine possible benefits for increasing FGEs at the powerhouse.
- 3) Build a hydraulic sectional model to conduct systematic evaluations of potential options for improving FGEs.

LITERATURE CITED

Brege, D. A., D. R. Miller, and R. D. Ledgerwood.
1987. Evaluation of the rehabilitated juvenile salmonid collection and passage system at John Day Dam - 1986. Report to U.S. Army Corps of Engineers, Contract DACW57-86-F-024537, 37 p. plus Appendix. (Available from Northwest Fisheries Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.)

Brege, D. A., W. T. Norman, G. A. Swan, and J. G. Williams.

1988. Research at McNary Dam to improve fish guiding efficiency of yearling and subyearling chinook salmon, 1987. Report to U.S. Army Corps of Engineers, Contract DACW68-84-H-0034, 34 p. plus Appendix. (Available from Northwest Fisheries Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.)

Gessel, M. H., L. G. Gilbreath, W. D. Muir, and R. F. Krcma.

1986. Evaluation of the juvenile collection and bypass systems at Bonneville Dam - 1985. Report to U.S. Army Corps of Engineers, Contract DACW57-85-H-0001, 63 p. plus Appendix. (Available from Northwest Fisheries Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.)

Gessel, M. H., L. G. Gilbreath, W. D. Muir, B. H. Monk, and R. F. Krcma.
1987. Evaluation of the juvenile salmonid collection and bypass systems at Bonneville Dam - 1986. Report to U.S. Army Corps of Engineers, Contract DACW57-86-F-0270, 53 p. plus Appendix. (Available from Northwest Fisheries Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.)

Gessel, M. H., R. F. Krcma, W. D. Muir, C. S. McCutcheon, L. G. Gilbreath, and B. H. Monk.

1985. Evaluation of the juvenile collection and bypass system at Bonneville Dam,
1984. Report to U.S. Army Corps of Engineers, Contract DACW57-84-F-0181,
48 p. plus Appendixes. (Available from Northwest Fisheries Center,
2725 Montlake Blvd. E., Seattle, WA 98112-2097.)

Gessel, M. H., B. H. Monk, D. A. Brege, and J. G. Williams.

1989. Fish guidance efficiency studies at Bonneville Dam First and Second Powerhouses - 1988. Report to U.S. Army Corps of Engineers, Contract DACW57-87-F-0322, 36 p. plus Appendix. (Available from Northwest Fisheries Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.)

Gessel, M. H., B. H. Monk, and J. G. Williams.

1988. Evaluation of the juvenile fish collection and bypass systems at Bonneville Dam - 1987. Report to U.S. Army Corps of Engineers, Contract DACW57-87-F-0322, 131 p. plus Appendix. (Available from Northwest Fisheries Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.)

Krcma, R. F., D. A. Brege, and R. D. Ledgerwood.

1986. Evaluation of the rehabilitated juvenile salmonid collection and passage system at John Day Dam - 1985. Report to U.S. Army Corps of Engineers, Contract DACW57-85-H-0001, 25 p. plus Appendix. (Available from Northwest Fisheries Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.) Krcma, R. F., D. DeHart, M. Gessel, C. W. Long, and C. W. Sims.

1982. Evaluation of submersible traveling screens, passage of juvenile salmonids through the ice and trash sluiceway, and cycling of gatewell orifice operation at the Bonneville First Powerhouse, 1981. Report to U.S. Army Corps of Engineers, Contract DACW57-81-F-0342, 36 p. plus Appendix. (Available from Northwest Fisheries Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.)

Krcma, R. F., G. A. Swan, and F. J. Ossiander.

1985. Fish guiding and orifice passage efficiency tests with subyearling chinook salmon, McNary Dam, 1984. Report to the U.S. Army Corps of Engineers, Contract DACW68-84-H-0034, 19 p. plus Appendixes. (Available from Northwest Fisheries Center, 2725 Montlake Blvd. E., Seattle, Wash 98112-2097.)

Monk, B. H., W. D. Muir, and R. F. Krcma.

1986. Studies to evaluate alternative methods of bypassing juvenile fish at The Dalles Dam - 1985. Report to U.S. Army Corps of Engineers, Contract DACW57-85-H-0001, 33 p. plus Appendixes. (Available from Northwest Fisheries Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.)

1 1 1

| | |

.

APPENDIX

Data Tables

					D	ate (Tes	t Uni	t) and	(series	number	r)*				
	-	22	April (1	2B) (1)			23 A	oril (12)	B) (1)			25 A	oril (12	2 B) (1)	
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO
Gatewell	1	89	4	58		1	269	17	87		1	108	15	74	0
Gap Net							6		2				1		
Closure		44	3	5	••	2	130	2	19			46	4	12	
First	3	6	1	5		2	45	2	12		2	18	2	7	
Second	1	96	3	4			230	7	15		5	89	1	10	••
Third	5	59		7		3	170	6	11		5	58	3	9	
Fourth Fifth	3	18 3				9 	84 15	-	3		3	45 6		9	
Totals	13	315	11	79	0	17	949	34	149	0	16	370	26	121	0
		94	A	9D) (9)			07 4		10) (1)			00 A.		D) (0)	
Location	80	VC	ST ST	CO	90	80	VC	gT .	CO		28		gT gT		
Gatewell		74	9	30			94	16	40		1	41	7	28	
Gap Net	-	21	0			1	45		10			7			
First	2	8	4	1		1	26	2	10		1	2	4	4	
Second	3	49	3	7		3	82	2	12		3	20	2	7	
Third		36	ĭ	6		5	41	3	3		2	27	2	5	1
Fourth	9	21		3		3	36		3		3	21	-	6	
Fifth							12				9				
Totals	15	22 0	15	54	0	14	336	24	80	0	20	120	14	49	1
		29	Anril (1	2 R) (1)			30 4	nril (19	2 R) (2)			1 M	ew (12	R) (1)	
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	-so	SC	YC	ST	CO	SO
Gatewell		38	12	21			73	30	22	1		101	22	32	
Clorume		18				1 2	30	5							
First	2	3	1	3		4	13	Å	2	-	1	19	4	2	
Second	ĩ	32	Ē	5		4	33	4	4		3	43	4	12	
Third	$\overline{2}$	20	ĩ	2		1	27	6	4		6	23	i	7	
Fourth	6	9					39					30		3	
Fifth		3				12	6	-	3		-				
Totals	12	123	23	34	0	20	221	49	43	1	12	232	29	61	0
		2	Mav (1	2B) (2)			3 M	[av (12	2 B) (1)			4 M	av (12	2 B) (2)	
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	ŶĊ	ST	CO	SO
Gatewell		72	22	44	1		149	33	32	1		66	9	25	1
Gap Net	2	2						2				1			
Closure	5	24	3	8		1	31	3	9		5	13		6	
First	3	10	1	3		5	21	1			3	11	2	3	
Second	7	43	2	7	1	6	52	5	4	1	4	7	1	4	
Third	4	31	3	10		6	18	4	2		2	9	1	1	
Fourth	6	15		12			18	3	3		3	6		9	3
Fifth	9	6				3		3			9	3			
Totals	36	203	31	84	2	21	289	54	50	2	26	116	13	48	4

Appendix Table 1.--Numbers of fish collected in the individual replicates of FGE tests at Bonneville Dam Second Powerhouse, 1989 (tests conducted in July and August captured only subyearling chinook salmon).

5 Max (12B) (2)				6 May (12B) (1)					7 May (19R) (9)						
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YĊ	ST	CO	SO
Gatewell		101	17	55	10	1	102	33	69	15	1	157	30	120	24
Gap Net	2								1		1	2	1	2	1
Closure	1	22	11	ð	2	1	43	1	10	8		37	7	19	7
First Second	4	28	4	0 2	4	1 9	38	7	12			28	6	3	2
Thind	ž	15	1	2	-	2	99	2	10	é		20	5	9	3
Fourth	a	10	1	2		4	3	J	Ā	-	4	15		3	e o
Fifth	9	3	3	-		3	3	-	-	6					
Totals	29	187	42	80	18	31	229	51	108	43	8	272	55	162	52
		8 1	Mav (1	2B) (1)			9 N	[av (1)	2B) (3)			10	May	(12 B)	(3)
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO
Gatewell		158	60	150	41		160	111	256	53	1	158	95	187	22
Gap Net	2	2		1	2		1	1	2		1	1	1	2	
Closure	2	30	16	25	15	1	29	14	21	20	2	32	14	16	8
First	2	11	10	5	5	1	14	10	12	11	1	6	3	9	4
Second	4	30	9	16	16	4	22	19	12	20	2	31	12	11	10
Third	3	12	7	9	9	1	11	9	7	14	5	15	3	10	8
Fourth		6	6	6		6	12	3	3	15	3	9		9	6
Finn	3	3	**	9		••								3	
Totals	16	252	108	218	88	13	249	167	313	138	15	252	128	247	58
			May (1	<u>2B) (4)</u>			12 1	lay (1	<u>2B) (4)</u>			13	May	(12B)	(4)
Location	sc	YC	ST		SO	SC	YC	ST	CO	SO	SC	YC	ST	co	SO
Gatewell	3	101	41	107	9	2	67	33	72	10	4	95	44	111	26
Gap Net	1	1	••		1	1			1			1	2	3	2
Closure	4	20	10	19	1	3	8	5	13	4	1	19	9	14	8
First	1	5	1	4		. 2	8	6	6	3		5	1	8	7
Second	3	17	4	9	1	2	10	9	7	7	7	24	9	17	7
Desceth	14	12	4	Ð	1	7	12	4	1	Ð	5	11	1	7	9
Fifth		9 6	••			3	10				12	3			9 3
Totals	26	171	60	144	19	26	120	60	106	29	43	161	66	160	71
		14 1	Mav (1	2B) (4)			15 N	đav (1	2B) (5)			15	Mav	(12A)	(5)
Location	SC	ŶĊ	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO
Gatewell	4	33	14	17	13	8	182	91	178	110	33	633	209	635	193
Gap Net	3					2	3	1	1	1	3	15	1	21	8
Closure	6	7	2	4	8	11	39	18	21	31	4	68	18	35	47
First	5	3		1	2	1	6	6	11	16	••	12	11	14	17
Second	11	14		6	7	6	28	14	11	29	6	50	21	34	43
Third	7	10	1	2	6	5	17	9	6	12	6	21	9	14	22
rourth Fifth	9 12	3 3			3	6	8	3 3	12	 R	3	3	3	3 5	9
Totals	57	78	17	30	39	89	284	145	240	905	55	802	97K	789	990

Date (Test Unit) and (series number)*

					1	Date (Tes	t Uni	t) and	l (series	numb	er)*				
		16	May (2B) (5)			16	May	(12A) (5)		1	7 May	(12B)	(5)
Location	SC	YC	ST	co	SO	SC	YC	ST	CO	SO	SC	C YC	ST	co	SO
Gatewell	5	70	129	186	67	15	214	280	849	106		125	98	242	190
Gap Net			1	2	3	4	1	2	53	9	2	2	1	3	3
Closure	5	8	16	29	19		12	29	61	38	4	4 31	24	35	79
First	2	3	11	7	8	2	5	10	32	5		L 6	12	10	27
Second	3	7	22	10	25	5	12	21	40	32	9) 20	23	29	66
Third	1	4	6	2	3	1	2	14	5	7	(3 10	9	7	41
Fourth	3		6					9	6	9	10	59	6	6	15
Fifth	••		••								(3			3
Totals	19	92	191	236	125	27	246	365	1046	206	47	7 201	173	332	424
		17	Mav ()	L2A) (5)			26	May	(12B) (6)			2	6 Mav	(12A)	(6)
Location	SC	YC	ST	CO	SO	SC	YC	ŚT	CO	SO	SC	C YC	ST	CO	SO

Gatewell	11	306	169	721	372	19	41	50	57	130	6	5 85	73	124	107
Gap Net	2	4	4	23	21	3	11	10	7	27	1	5 3	6	12	7
Closure	1	34	29	47	101	7	4	7	10	29	1	2 19	25	19	54
First	1	11	10	27	52	2	3	11		21		2 12	16	- 8	45
Second	11	39	29	32	96	4	15	29	8	63	9	9 17	32	14	72
Third	8	25	16	12	45	5	5	16	6	26	1	1 12	25	19	61
Fourth		3	6	3	27	3				9	-	- 15	12	6	21
Fifth	3		3	3	3	••				-	-				12
Totals	37	493	266	868	717	43	79	123	88	305	10-	163	189	202	379
		27]	Mav ()	L2B) (7)			27	Mav	(12A) (7	')		2	8 Mav	(12B)) (6)
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	C YC	SŤ	CO	SO
Geterrell	24	07	94	55	01	67	171	55	159	145	4	1 75	49	50	00
Gauewell Com Not	04	51	20	00		07	1/1	00	103	140	4.	L 70	42	09	00
Clamme	10	20	10	17	27	14				110		,	0 12		1
Finet	10	15	10	10	19	14	07	19	43 7	27	4	J 20 E 0	10	40 E	03
Pirec		10	14	10	70	19	41 22	14	16	07) 9 2 12	10	11	20
Thind	3	14	14	14	14	10	00	49	10	01		2 10	<u>41</u>	11	00
Found	3	14	9	1 9	00	1	23	10	0	00) (9	13	42
Fifth	3	3		- -	3				3	33 9	-			3	
Totals	64	184	62	104	384	117	348	142	222	490	84	5 1 29	109	124	295
		9 8 (May (19A) (B)			20	May	(1912) (7	'n			0 Mar	(19.4)	(7)
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC YC	ST	CO	so
••••••••••••••••••••••••••••••••••••••								an an an disk with a s							
Gatewell	89	109	69	112	66	23	38	24	55	108	39	ə 79	57	158	238
Gap Net	6	2	1	8	3	1		1	1	5		3 1	••	9	9
Closure	14	25	17	26	39	4	8	9	8	74	1) 13	15	20	87
First	7	14	10	12	23	4	7	5	4	30	-	3 6	-3	-9	56
Second	13	38	31	28	74	13	31	13	14	99	1.	1 29	12	15	128
Third	13	14	26	24	58	-0	12	7		51		3 8	5	15	72
Fourth	6	15	21	21	36		-3	3	ě	12		ŝ ŏ	-	9	27
Fifth	3			6	3		6		-	3	-			-	-9
Totals	151	2 17	175	237	302	48	105	62	96	382	71	5 145	92	235	626

Appendix	Table	1Continued.	
Appendix	Table	1Continued.	

						Date (Tes	t Uni	t) and	(series	numbe	r)*				
		30 1	May (1	2B) (6)			_30	<u>May (1</u>	<u>2A) (6)</u>			3	1 May	(12B)	(7)
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO
Gatewell	16	36	22	35	52	58	57	53	83	87	22	25	10	23	57
Gap Net	3			1	2	2	4		9	8	4		1	3	4
Closure	8	13	12	13	26	22	20	17	21	29	11	L 7	10	3	23
First	7	4	1	3	18	4	4	4	5	12	3	3 4	2	4	11
Second	13	11	3	6	39	21	12	23	14	46	18	15	9	10	38
Third	8	6	7	9	20	14	10	19	14	34	- 14	12	7	5	30
Fourth	6		3	3	12		3		6	24	3	3	3	6	27
Fifth			••				3			3	-	- 3	3		
Totals	61	70	48	70	1 69	121	113	116	152	243	70	69	45	54	1 9 0
		31 1	Mav (1	2A) (7)			1 J	une (12	2 B) (6)			1	June ()	12A) (6)
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC YC	ST	CO	SO
Gatewell	76	43	38	110	107	48	25	15	34	94	72	2 33	23	74	83
Gap Net	8	2	••	1	2	12	1	1	3	4		3		7	9
Closure	12	14	12	11	34	19	11	8	12	44	18	3 18	9	16	53
First	6	8	8	6	17	6	1	3	3	22	10) 4	2	6	38
Second	17	15	10	6	38	14	8	8	10	51	30) 19	9	16	75
Third	23	14	9	9	51	11	1	2	1	23	12	2 7	9	10	37
Fourth	15		6	15	24	3		3		21	-	- 3	3	12	30
Fifth	3			6							e	5			6
Totals	1 60	96	83	164	273	113	47	40	63	259	154	84	55	141	33 1
		2 Ju	ine (1	2B) (7)			2 J1	une (12	A) (7)			3 .	une (1	2B) ((6)
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC YC	ST	CO	SO
Gatewell	56	26	11	26	39	113	49	47	94	64	94	I 30	12	67	27
Gap Net	5			3		6	2	2	4	1	5	i			1
Closure	28	10	4	4	23	26	18	12	14	45	32	2 7	6	4	21
First	4	4	4	3	11	7	3	3	5	22	8	3 4	5	1	7
Second	20	8	11	7	38	19	15	14	15	40	23	8 8	5	7	22
Third	10	8	6	4	23	21	7	8	6	19	14	1 3		3	14
Fourth	3				3	12		9	6	21	8	3 3	3		6
Fifth			3				6		3		(3			
Totals	126	56	39	47	137	204	100	95	147	212	180	55	31	82	98
		<u>3 J</u> 1	ine (1	2A) (6)			<u>4 J</u>	<u>ine (12</u>	B) (7)			4 .	une (1	2A) (7	<u>D</u>
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	ST	co	<u>so</u>
Gatewell	88	25	14	51	30	62	11	6	16	12	225	5 24	22	65	35
Gap Net	11	1		2	3	4				1	14	l		2	1
Closure	28	10	4	16	24	10	2		2	6	26	34	4	6	14
First	9		1	3	12	4	**		1	2	11	L 1	3	1	8
Second	25	12	4	7	29	18	5	4	2	8	29) 4	4	1	10
Third	7	4		2	9	12		3	4	6	18	5 1	1	1	3
Fourth	6	9			9	3			3		18	5 3	6	3	9
Fifth					6					3	9	6			
Totals	174	61	23	81	122	113	18	13	28	38	844	48	40	79	80

		Date (Test Unit) and (series number)*									
ocation	8C	<u>8 July (12B) (8)</u> YC ST CO SO	80	<u>8 July (12A) (8)</u> YC ST CO SO	SC	<u>12 July (12B) (8)</u> VC ST CO SO					
Jatewell	119		157		45						
ap Net	12		24		2						
losure	49		58		23						
ïrst	21		33		10						
econd	67		92		41						
hird	63		76		18						
ourth	36		24		24						
ifth	9		21		6						
Total	376		485		169						
ocation	SC	<u>12 July (12A) (8)</u> YC ST CO SO	SC	<u>13 July (12B) (9)</u> YC ST CO SO	SC	<u>13 July (12A) (9)</u> YC ST CO SO					
atewell	53		91		64						
ap Net	11				6						
locure	29		35		27						
irst	13		14		19						
econd	26		57		81						
hird	28		53		34						
ourth	9		21		36						
ifth			6		6						
Total	169		277		273						
ocation	SC	<u>14 July (12B) (8)</u> YC ST CO SO	SC	<u>14 July (12A) (8)</u> YC ST CO SO	SC	<u>17 July (12B) (9)</u> YC ST CO SO					
latewell	80		76		155						
an Net	3		16		4						
losure	34		23		57						
irat.	14		20		23						
econd	52		64		160						
hird	39		40		166						
ourth	33		27		97						
ifth	3		6		21						
Totals	258		281		673						
ocation	SC	<u>17 July (12A) (9)</u> YC ST CO SO	SC	<u>18 July (12B) (8)</u> YC ST CO SO	SC	<u>18 July (12A) (8)</u> YC ST CO SO					
	100										
	122		51		52						
ap Net	4		.4		3						
losure	64		41		52						
irst	32		17		26						
econd	161		78		88						
hird	127		63		88						
ourth	99		114		117						
ifth	24		15		63						
Totals	688		383		489						

		D	ate (Ter	t Unit) and (series num	ber)*	
Location	SC	<u>19 July (12B) (9)</u> YC ST CO SO	SC	<u>19 July (12A) (9)</u> YC ST CO SO	SC	<u>20 July (12B) (8)</u> YC ST CO SO
Gatewell Gap Net Closure First	36 2 29 23		57 1 40 21		32 3 21 10	
Second Third Fourth Fifth	88 104 84 18		101 110 90 27		40 19 15 6	
Total	384		447		146	
Location	SC	20 July (12A) (8) YC ST CO SO	SC	21 July (12B) (9) YC ST CO SO	SC	21 July (12A) (9) YC ST CO SO
Gatewell Gap Net Closure First	25 3 24 15		94 5 59 23		121 4 58 23	
Second Third Fourth Fifth	40 20 12 3		58 24		90 64 33 3	
Total	148		340		402	
Location	SC	<u>24 July (12B) (8)</u> YC ST CO SO	SC	<u>24 July (12A) (8)</u> YC ST CO SO	SC	<u>25 July (12B) (9)</u> YC ST CO SO
Gatewell Gap Net Closure First Second Third Fourth Fifth	69 1 54 14 43 34 12 6		61 6 55 17 55 28 15		129 2 68 23 88 50 18 6	
Total	233		237		384	
Location	SC	25 July (12A) (9) YC ST CO SO	SC	26 July (12B) (9) YC ST CO SO	SC	<u>26 July (12A) (9)</u> YC ST CO SO
Gatewell Gap Net Closure First Second Third Fourth Fifth	74 3 58 23 76 20 30 15		65 2 34 15 50 27 15 3		51 1 27 16 56 23 24 3	
Total	. 299		S 11		201	

					i	Date (Te	et Uni	it) and	l (seri	ies num	ber)*			
		27 J1	ulv (1	2B) ((10)		27 J	ulv ()	2A) (10)		28 Ju	dv (12B)	(10)
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	ST CO	SO
Gatewell	72					89					61			
Gap Net	2					25					2			
Closure	35					46					53			
First	10					30					14			
Second	60					49					75			
Third	36					40					68			
Fourth	24					15					45			
Fifth	3					9					9			
Total	242					303					327			
		28 J1	uly (1	<u>2A) (</u>	(10)									
Location	SC	YC	ST	CO	SO									
Gatewell	67													
Gap Net	13													
Closure	18													
First	15													
Second	40													
Third	54													
Fourth	42													
Fifth	9													
Total	258													

28

				YEA	RLING CI	HINOOK S	SALMON			
Test Unit	13 A	1 8A	1 3A	13 A						
Test Date 2	2 April	23 April	25 April	26 April	27 April	28 April	29 April	30 April	1 May	2 May
Gatewell	95	259	89	82	179	121	64	66	91	123
First Net	138	282	138	132	138	84	96	84	90	144
Second Net	126	231	96	72	99	114	42	63	144	114
Third Net	93	150	72	24	75	102	36	36	60	69
Fourth Net	87	108	81	39	39	48	30	39	75	51
Fifth Net	42	138	81	27	33	48	36	54	48	51
Sixth Net	63	78	48	18	30	27	18	15	42	39
Seventh Net	: 24	39	15	6	12	9		9	12	24
Totals	668	1285	620	400	605	553	322	366	562	615
Test Unit	1 3A	18 A	1 8A	13 A	1 3A	13 A				
Test Date	3 May	4 May	5 May	6 May	7 May	8 May	9 May	10 May	11 May	12 May
Gatewell	273	74	141	140	127	100	75	132	58	53
First Net	183	60	219	198	84	153	168	165	54	54
Second Net	156	51	45	123	87	72	78	63	36	27
Third Net	96	36	54	54	54	18	30	36	15	15
Fourth Net	75	30	33	39	33	42	18	24		15
Fifth Net	48	15	33	36	30	15	15	12	6	21
Sixth Net	36	9	18	1 2	21	9	9	3	6	6
Seventh Net	; 6	3	9	3	3	9	3			6
Totals	873	278	552	605	439	418	396	435	175	197

Appendix Table 2.--Vertical distribution data for yearling and subyearling chinook and coho salmon, collected at Bonneville Dam Second Powerhouse, 1989.

Totals

				YEARL	ING CHIN	OOK SAL	MON			
Test Unit	13 A	13A	13 A	13 A	13A	13 A	1 3A	1 3A	1 3A	
Test Date	13 May	14 May	15 May	16 May	17 May	1 June	2 June	3 June	4 June	
Gatewell	31	31	191	31	59	15	11	8	10	
First Net	42	48	213	24	66	9	12	15	6	
Second Net	30	24	75	33	21	15	6	12	9	
Third Net	1 2	18	30	6	15	9	9	6	3	
Fourth Net	24	24	15	3	24	9	3	12	3	
Fifth Net	9	18	6	18	18	9	6	3		
Sixth Net	15	18	9	3	12	9				
Seventh Net	t	3	3		12	3	3	3	3	
Totals	168	184	542	118	227	78	50	59	34	
			ST	BYEARL	ING CHIN	IOOK SAL	MON			
Test Unit	1 3A	1 3A	1 3A	1 3A	13A	1 3A	13A	1 8A	1 3A	13A
Test Date	8 July	12 July	13 July	14 July	17 July	18 July	19 July	20 July	21 July	24 July
Gatewell	69	47	47	40	104	28	35	19	35	53
First Net	48	39	33	57	90	33	45	9	33	48
Second Net	42	33	27	51	33	27	54	27	66	48
Third Net	57	30	18	24	96	12	45	36	45	51
Fourth Net	75	51	36	45	1 23	57	84	15	69	60
Fifth Net	69	30	48	42	168	90	78	27	45	33
Sixth Net	87	24	33	27	171	96	84	21	27	39
Seventh Ne	t 18	15	18	12	45	36	30	3	24	21

				SUBIRA	ALLING CHINOUR SA
Test Unit	1 3A	13 A	1 3A	13 A	
Test Date	25 July	26 July	27 July	28 July	
Gatewell	54	37	28	37	
First Net	90	54	24	42	
Second Net	111	9	66	66	
Third Net	60	48	42	51	
Fourth Net	78	42	33	63	
Fifth Net	78	36	48	90	
Sixth Net	21	36	51	27	
Seventh Net	12	9	15	69	
Totals	504	271	307	445	

SUBYEARLING CHINOOK SALMON

.

•

							D	ate (T	est Uz	nit)					
		٥	Max ((3D)			10	May	(3 D)			11	May	(9 R)	
Location	SC	YC	ST	CO	SO	SC	YC	SŤ	CO	SO	SC	YC	ST	CO	SO
Gatewell	8	99	38	149	6	5	84	70	69	9	19	87	53	78	7
Gap Net	1	7	0	8	1	7	6	1	3		2	2		2	0
Closure	7	34	5	18	2	5	23	8	4		2	26	3	6	3
First	3	27	9	6	3	12	18	6	6		6	15	6		3
Second	15	57	3	21		12	60	15	27	6	14	42	13	10	5
Third	12	12		3	6	24	36	18	10		32	15	8	4	2
Fourth	16						10		105		10		-		
Total	5 58	236	55	205	18	89	243	118	127	15	98	196	83	103	13
-		12	May	(3B)			1	May	(3B)			14	May	(3B	
Location	sc	YC	ST			SC	YC	ST		80	SC	YC	ST		SO
Gatewell	27	70	33	64	8	25	68	60	58	6	35	58	64	26	15
Gap Net	3	5		5	1	8	8	2	4	1	3	7		1	2
Closure	10	17	5	3	7	5	19	9	7	3	7	18	2	5	5
First	10	3	3				10	12		3	12	15		3	
Second	19	20	10	3	4	19	31	10			29	34	11	4	11
Fourth	24	4 0	3	6	ó	24		3		4	18	10		23	
Total	91	141	89	84	97	105	150	107	81	97	191	169	89	44	95
10001		141		01		100	100	107	91		181	100	0.		30
•		27	May	(3B)			28	May	(3B)			2	9 May	<u>(3B)</u>	
Location	sc	YC	ST	co		SC	YC	ST		SO	SC	YC	ST		SO
Gatewell	27	38	50	65	78	29	7	31	36	26	36	5	27	73	26
Gap Net	4	2	1	13	8	2	1	4	6	2	5	2	0	15	2
Closure	19	18	11	13	64	12	7	9	17	26	19	8	9	10	19
First	12	21	12	6	33	9	10	3	12	21	12		3	21	2
Second	20	10	24	14	100	11	12	10	13	31	9	0	10	2	20
Fourth		9	13	3	9	6	20	9	3	24 12	27		1		19
Totals	87	114	114	122	352	79	85	85	95	142	111	23	56	134	89
		30	Mav	(3B)											
Location	SC	YC	ST	CO	SO										
Gatewell	38	12	31	50	29										
Gap Net	4		2	3	8										
Closure	12	6	6	11	10										
First	3	3	9	15	9										
Second	9	4	11	16	36										
Third	10	1	5	3	13										
Fourth			••		6										
Totals	76	26	64	98	111										

Appendix Table 3.--Numbers of fish collected in the individual replicates of FGE tests at Bonneville Dam First Powerhouse, 1989 (tests conducted in July and August captured only subyearling chinook salmon).

							D	te (T	est Ur	nit)					
		12	July	(3B)			13	July (3 B)			14 ,	July (3B)	
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO
Gatewell	18					25					19				
Gap Net	1					1					5				
Closure	24					25					53				
Pirst	12					24					1 <i>0</i> 9				
Third	02					80					149				
Fourth	99					57					108				
Total	s 305					303					504				
		18	July	(3B)			19	July	(3B)			20) Julv	(3B)	
Location	SC	YC	ST	co	SO	SC	YC	SŤ	СО	SO	SC	YC	ST	CO	SO
Gatewell	16					30					9				
Gap Net	3					2					1				
Closure	12					12					22				
First	12					9					33				
Second	177					126					100				
Fourth	291					213					129				
rourth	102					100					01				
Total	613					497					431				
		21	July	(3B)			24	July	<u>(3B)</u>						
Location	sc	YC	ST.	<u> </u>	SO	SC	YC	ST	<u> </u>						
Gatewell	8					29									
Gap Net	3					1									
Closure	18					29									
F 1FSU Second	190					100									
Third	171					102									
Fourth	120					69									
Total	455					353									

SC = Subyearling chinook salmon YC = Yearling chinook salmon ST = Steelhead CO = Coho salmon SO = Sockeye salmon

_¥	R. CHI	NOOK		SUB.	CHINOO	K		C	оно
Test Unit	3 B								
Test Date 8	May	26 May	8 May	26 May	11 July	17 July	25 July	8 May	26 May
Gatewell	15	11	10	13	15	30	15	22	36
First Net	75	84	48	75	18	63	24	48	84
Second Net	54	42	39	48	33	42	27	15	72
Third Net	27	42	21	27	51	123	30	18	27
Fourth Netet	18	18	3	27	102	345	75	9	12
Fifth Net	15	6		15	140	444	60	-	6
Sixth Net	3		3	9	159	333	33	-	
Seventh Net					42	96	15	-	
Totals	207	203	124	214	560	1476	279	112	237

Appendix Table 4.--Vertical distribution data for yearling and subyearling chinook and coho salmon collected at Bonneville Dam First Powerhouse, 1989.

AD			
3 B	3 B	3 B	3 B
8 May	26 May	8 May	26 May
3	5	19	45
9	72	27	114
6	39	3	72
6	39	3	30
3	39	6	33
	27	6	21
3	9		3
0	-	3	
30	811	67	318
	8 May 3 9 6 6 3 3 0 30	8 May 26 May 3 5 9 72 6 39 6 39 3 39 27 3 9 0 30 811	8 May 28 May 8 May 3 5 19 9 72 27 6 39 3 6 39 3 3 39 6 27 6 3 9 0 3 30 811 67

٠,