
Migratory Behavior and Adult Contribution: of Summer Outmigrating Subvearling Chinook Salmon in John Day, Reservoir

1981-1983

Final Report

LLS, Department of Energy: Bonneville Power Administrations Division of Fish & Wildlife

U.S. Department of Commerce National: Oceanic & Atmospheric, Administration National Marine Fisheries Service

Northwest Fisheries Centers Coastal/Zone & Estuarine

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the author's and do not necessarily represent the views of BPA.

For copies of this report, write to:

Bonne-ille Power Administration Division of State of PJ P.O. Box 3621 Portland, OR 97208

MIGRATORY BEHAVIOR AND ADULT CONTRIBUTION OF SUMMER OUTMIGRATING SUBYEARLING CHINOOK SALMON IN JOHN DAY RESERVOIR, 1981-1983

by

Albert E. Giorgi

David R. Miller

and

Benjamin P. Sanford

Coastal Zone and Estuarine Studies Division Northwest Fisheries Center National Marine Fisheries Service National Oceanic and Atmospheric Administration

Prepared for:

Tom Vogel, Project Manager
U.S. Department of Energy
Bonneville Power Administration
P.O. Box 3621
Portland, Oregon 97208-3621

Contract DE-A179-83BP39645 Project 81-1

April 1990

.

Abstract

During summer 1981-1983, the National Marine Fisheries Service investigated the effects of river flow volumes on the travel time of subyearling chinook salmon migrating through John Day Reservoir. Analyses were based on mark recovery data from freeze-branded fish released in the McNary Dam tailrace and recaptured at John Day Dam. In addition to this effort, the distribution of juvenile chinook salmon within the reservoir was observed through purse seine sampling. Coded wire tag data provided a measure of intra- and interannual performance in terms of adult contribution.

The travel time data were largely inconclusive. This was due to poor mark-recovery capability coupled with the difficulty of isolating flow from other closely related variables. A large portion of the juveniles tended to range upstream and did not exhibit consistent displacement downstream.

Subyearling chinook salmon migrating through John Day Reservoir early in the summer contributed more adults than those juveniles migrating later in the summer. This pattern was consistent each year.

CONTENTS

		Page
INTRODUCTION		
STUDY AREA		2
METHODS		2
RESULTS		5
Freeze-Branded Groups		10
Fish Distribution		19
ADULT CONTRIBUTION		27
DISCUSSION		31
CONCLUSIONS		
LITERATURE CITED	•	37
APPENDIX A		
APPENDIX B		43
APPENDIX C		57

INTRODUCTION

Hydroelectric development of the Columbia River system has resulted in decreased salmon and steelhead runs (Raymond 1979). In response to this problem, fisheries managers have developed minimum instream flow recommendations and are budgeting water to provide for optimum flows during periods of peak juvenile migrations. Scientific evidence supporting these actions is based for the most part on data relating to juvenile spring chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (O. mykiss) migrations (Raymond 1979; Sims and Ossiander 1981). It is not apparent if fish passage enhancement benefits of increased flows demonstrated for yearling spring chinook salmon also apply to subyearling chinook salmon migrating during the summer.

Past research showed that even during high-flow years; large numbers of subyearling chinook salmon remain in John Day Reservoir for a considerable time (Raymond et al. 1975; Sims et al. 1976; Miller and Sims 1984).

The National Marine Fisheries Service (NMFS) conducted a multiyear study of the migratory behavior of subyearling chinook salmon (fall and summer races) in John Day Reservoir (Lake Umatilla). From 1981 to 1983, marked [freeze brand and codedwire tag (CWT)] juvenile fall chinook salmon were released in the tailrace of McNary Dam as part of the study. The objectives were to 1) describe migratory behavior, 2) assess the effects of flow on migration rate, and 3) assess the adult contribution data from various segments of the outmigrations.

Three annual reports covering the 3 years (1981-1983) of juvenile migratory studies in the reservoir (Sims and Miller 1982; Miller and Sims 1983, 1984) were submitted to the Bonneville Power Administration (BPA). During the interim, NMFS has been collecting adult contribution data from those releases. The full complement of adult contributions were realized in 1988 with the return of 5-ocean fish from the 1983

outmigration. This final report evaluates the adult contribution data. Additionally, the authors of this report have reanalyzed the data describing the migratory behavior of subyearling chinook salmon in John Day Reservoir which were presented by Sims and Miller (1982) and Miller and Sims (1983, 1984).

STUDY AREA

John Day Dam is a hydroelectric project on the Columbia River at River Kilometer (RKm) 345, approximately 200 km east of Portland, Oregon. The project was constructed and is operated by the U.S. Army Corps of Engineers (COE). The reservoir (Lake Umatilla) formed by the dam extends 122 km upstream to the tailrace at McNary Dam which is about 52 km downstream from the confluence of the Columbia and Snake Rivers. The width of the reservoir ranges from 0.8 to 4.2 km, and its midpool depth ranges from 11 to 48 m.

METHODS

Juvenile (subyearling) fall and summer chinook salmon entering John Day Reservoir from mid-June through August were sampled and marked with both freeze brands and CWTs at McNary Dam each year (1981-1983). Each week, one to three groups of fish were freeze branded (Mighell 1969) with a unique mark, held for a minimum of 1 day, and fish bearing the same brand were released into the tailrace below the dam at 2100 h on the release date. Freeze-branded fish were recovered in the airlift sampling system (Sims et al. 1981) at Turbine Unit 3, John Day Dam.

Three CWT codes were used in 1981, four in 1982, and five in 1983. They were blocked to roughly correspond to the early, middle, and late segments of the summer outmigration. Additionally, in all three study years, juvenile chinook salmon were caught by purse seine, freeze branded, and released on site back into the reservoir. An 11-m power block seiner (NMFS Research Vessel Columbia) was used to purse seine

sample John Day Reservoir throughout the summer and fall of 1981-1983. Purse seine fishing techniques were generally as described by Johnsen and Sims (1973). Sampling extended from the forebay at John Day Dam (RKm 348) to the McNary Dam tailrace (RKm 467). Nine sampling transects were established (Fig. 1). At each transect, the seine was set as near to each shore as possible (allowing a minimum depth of 5 m) and at mid-reservoir. At all sites except Willow Creek and Crow Butte, this was within 10 m of the shore. At Willow Creek, the Washington shore site was approximately 75 m offshore and the Crow Butte, Oregon, shore site was approximately 90 m offshore. Recoveries of marked fish in the purse seine from marked groups released in the McNary Dam tailrace, at RKm 468, as well as marked groups released at transects were used to describe subyearling chinook salmon distribution and migrational behavior within John Day Reservoir.

To describe the migratory patterns within the reservoir, fish were captured with a purse seine at transects, and the catches were processed shipboard. All fish were anesthetized with MS-222, counted, and examined for marks. Unmarked fish were freeze branded. A subsample was measured for fork-length. After processing, all fish were allowed to recover from the anesthetic and released.

Tagged adult salmon were recovered at hatcheries, spawning grounds, and ocean and river sport and commercial fisheries as well as by tag detection equipment operating in fishways at Bonneville, McNary, and Lower Granite Dams. Recovery data were acquired through the Pacific Marine Fisheries Commission (PMFC) database.

Analyses included data reported through August 1989.

All of the fish that entered the gatewell slots at the Unit 3 sampling system were counted and inspected for brands. Typically, the airlift sampler was operated once each hour, 24 hours/day, 5 days/week. The fish were examined on the hour excepting weekends when fish were examined every day or two.

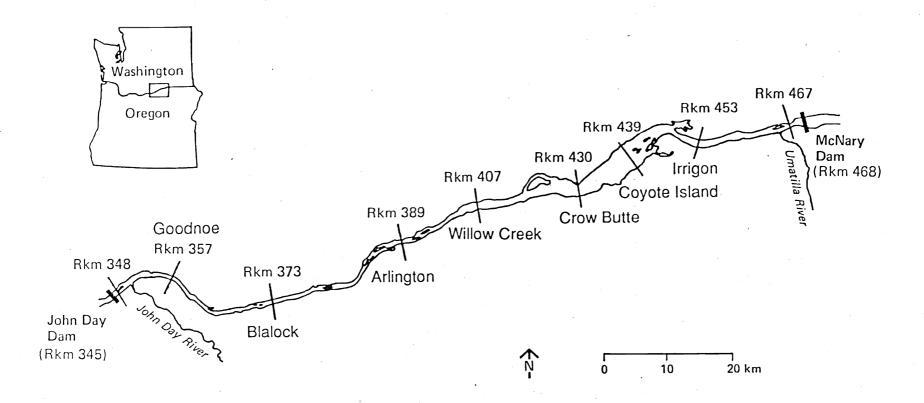


Figure 1.--Purse seine transect locations in John Day Reservoir.

Since the amount of river flow discharged through Unit 3 changed over the course of the sampling period, the sampling effort necessarily changed. Therefore, the daily catch was adjusted according to the proportion of the total river flow discharged through Unit 3. This adjusted catch is referred to as the passage index. The passage index is not a daily passage estimate.

RESULTS

Summer flow volumes varied considerably over the 3 years this study was conducted (Fig. 2). Most of the differences in flow volumes were observed between 15 June and 20 July each year. From 20 July until approximately 1 September, flow volumes were nearly the same from year to year. Based on the flow volumes prior to 20 July, the years 1981, 1982, and 1983 can be characterized as medium, high, and medium to low, respectively.

Water temperature patterns were generally similar among years (Fig. 3). Early in the summer, temperatures ranged between 57° and 59°F. Water temperatures increased steadily over the course of the summer and peaked near 70°F by the end of August.

In 1982 and 1983, two very different water years, the passage patterns of subyearling chinook salmon at John Day Dam were quite similar (Table 1). Each year, there was a minor peak near the beginning of July, and a major peak at the end of July (Fig. 4). In 1982, the year of highest flows, 90% of the outmigration had passed John Day Dam by the week ending 4 September. In 1983, the year of lowest flows, the 90% mark was realized one week earlier on 26 August. In 1981, the 90% mark occurred somewhat earlier, in the week ending 22 August.

Flow X Date : John Day Pool Subyearling Chinook, Summer 1981-1983

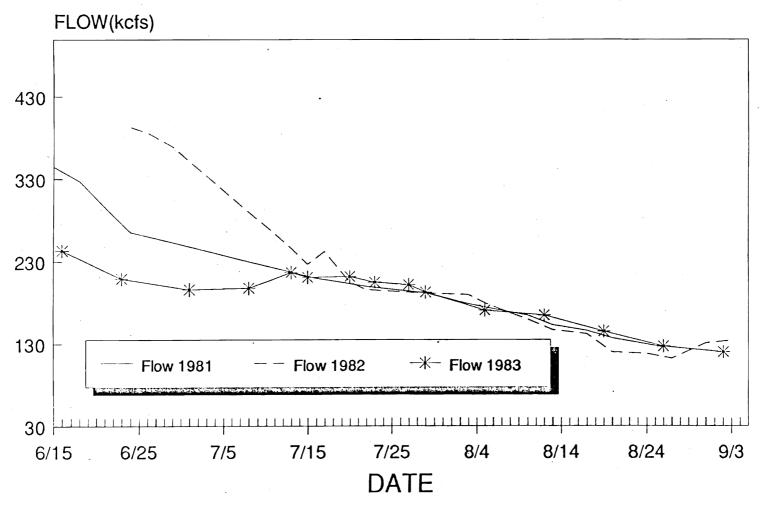


Figure 2.--Summer flow volumes in John Day Reservoir, 1981-1983. The hourly flow volumes occurring between 2100 and 0600 h were averaged for each day and plotted.

Water Temperature X Date: John Day Pool Subyearling Chinook, Summer 1981-1983

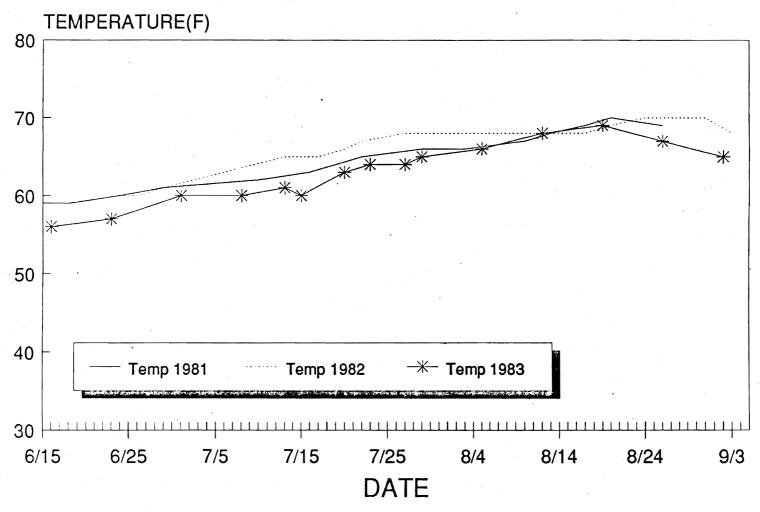


Figure 3.--Water temperatures recorded at John Day Dam, summer 1981-1983.

Table 1.--Weekly passage indices for subyearling chinook salmon at John Day Dam, 1981-1983. The passage index is the ratio of the number of fish enumerated in Turbine Unit 3 to the proportion of the river flow discharged through that turbine.

198	1	198	2	1983	}
Passage index	Week ending	Passage index	Week ending	Passage index	Week ending
10,698	6 Jun	35,211	5 Jun	6,920	3 Jun
29,239	14 Jun	55,786	12 Jun	62,263	10 Jun
27,958	20 Jun	53,616	19 Jun	77,333	17 Jun
13,449	27 Jun	72,578	26 Jun	106,809	24 Jun
97,006	$7 \mathrm{Jul}$	83,428	$3 \mathrm{Jul}$	71,028	$1 \; \mathrm{Jul}$
39,108	11 Jul	41,750	10 Jul	11,072	8 Jul
71,412	18 Jul	37,997	17 Jul	151,204	15 Jul
53,772	25 Jul	244,567	24 Jul	310,690	22 Jul
124,236	1 Aug	140,691	31 Jul	82,251	29 Jul
85,934	8 Aug	62,339	7 Aug	64,293	5 Aug
28,039	15 Aug	30,541	14 Aug	40,495	12 Aug
25,000	22 Aug	28,213	21 Aug	24,163	19 Aug
4,384	29 Aug	28,346	28 Aug	20,292	26 Aug
6,188	5 Sep	21,046	4 Sep	19,349	2 Sep
5,560	12 Sep	3,370	11 Sep	23,310	9 Sep
3,535	19 Sep	3,854	18 Sep	15,413	16 Sep
3,479	26 Sep	7,208	25 Sep	6,338	23 Sep
3,062	3 Oct	16,429	2 Oct	1,856	30 Sep
1,814	10 Oct	8,448	9 Oct	2,630	7 Oct
1,223	17 Oct	7,160	16 Oct	2,708	14 Oct
686	24 Oct	5,250	23 Oct	1,920	21 Oct
1,002	31 Oct	7,638	30 Oct	1,643	28 Oct
1,095	7 Nov	6,979	6 Nov	3,038	4 Nov
959	14 Nov	7,324	13 Nov	3,280	11 Nov
2,341	21 Nov	6,795	20 Nov	5,848	18 Nov
1,258	28 Nov	2,776	27 Nov	6,457	25 Nov
2,196	5 Dec	7,825	4 Dec	10,288	2 Dec
1,552	12 Dec	4,402	11 Dec	4,334	9 Dec
4,161	17 Dec	1,909	18 Dec	1,705	16 Dec

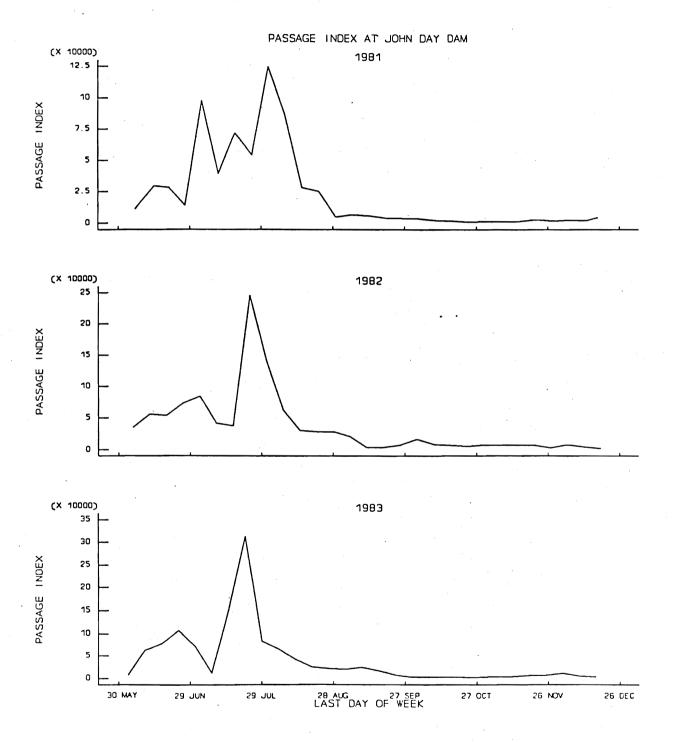


Figure 4.--Subyearling chinook salmon weekly passage indices at John Day Dam, summer 1981-1983.

Freeze-Branded Groups

Overall, fish moved slowest in 1982. The median travel time through John Day Reservoir for freeze-branded groups ranged from 6 to 26 days in 1981, 9 to 46 days in 1982, and 7 to 29 days in 1983 (Tables 2-4).

Correlations between median travel time and each variable (release date, water temperature, and flow) present confusing results. In 1981, no variable was correlated with travel time (Table 5, Fig. 5). In 1982, the year of the fewest mark recoveries, travel time was significantly correlated with each variable (Table 5, Fig. 6). In 1983, travel time was only correlated with water temperature (Table 5, Fig. 7).

Using the median travel time (days) of the passage index from each marked group as the behavioral response, we attempted to determine which factors (date of release, water temperature, or flow) best explain migration time by employing the stepwise regression routine in Statgraphics. Results from 1981 indicated that travel time could not be described as a linear function of any of the three variables (Table 6, Appendix Table A1). In 1982, travel time was best described as a function of release date (Table 6, Appendix Table A1). Neither temperature nor flow entered the model, because there were such strong correlations among the variables (Table 5). In 1983, travel time was best described as a function of release date and temperature (Table 6, Appendix Table A1). In this case the model included a variable which alone was not correlated with travel time. It appears that in 1982 and 1983, fish marked and released later in the summer generally traveled slower, while water temperature increased and flows decreased (Figs. 5-7).

¹ References to trade names do not imply endorsement by the National Marine Fisheries Service, NOAA.

Table 2.--Summary of 1981 brand release and recovery data from groups of subyearling chinook salmon marked and released at McNary Dam and recaptured at John Day Dam. Travel time is the number of days required to traverse the reservoir from McNary Dam tailrace to John Day Dam. The medians were calculated from the passage indices.

Release	Brand	Nu	mber of fisl	h			Median travel
date	code	Released	Released Recovered Passage index*		Flow ^b (kcfs)	Temperature ^b (°F)	time (days)
61581	LAID1	3,325	28	437	345	58.6	18
61881	LAID2	4,654	44	667	327	58.8	16
62481	LAID3	3,458	37	554	265	59.7	10
62981	LAID4	6,286	38	591	253	60.7	7
71081	LAIM1	10,115	79	840	225	62.4	19
71681	LAIM3	10,143	65	628	210	63.4	21
72281	LAIM2	10,012	50	526	200	64.5	14
72981	LAIM4	12,310	64	624	192	65.9	9.
80381	LAUP1	2,512	11	105	179	66.3	6
81081	LAUP3	2,663	15	113	165	67.4	17
81381	LAUP4	2,545	12	81	153	• 67.9	26
81781	LA3X1	2,547	10	63	146	68.9	18
82081	LA3X2	2,536	22	145	137	69.5	19
82681	LA3X3	1,577	6	35	126	68.9	13

The passage index is calculated daily as the ratio of the number recovered to the sampling effort and summed over days. Sampling effort was the average proportion of the total river flow discharged through Unit 3 during the 10-hour period 2000-0600 h.

The average river flow volume and water temperature over the 10-day period following release of the marked group.

Table 3.--Summary of 1982 brand release and recovery data from groups of subyearling chinook salmon marked and released at McNary Dam and recaptured at John Day Dam. Travel time (median) is the number of days required to traverse the reservoir from McNary Dam tailrace to John Day Dam.

Release	Brand	Nu	mber of fis	h			Median travel		
date	code	Released	Recovered	Passage index*	Flow ^b Te (kcfs)	emperature ^b (°F)	time (days)		
62482	LAH-1	2,396	7	148	393	59.9	9		
62682	LAH-2	3,235	17	346	386	60.3	13		
62982	LAIF1	2,690	9	136	369	60.9	22		
71382	LAIC3	3,035	15	181	246	64.7	13		
71582	LAIM1	4,323	13	143	227	64.9	18		
71782	LAIM3	4,012	17	219	242	65.4	13		
72082	LAIF2	5,001	16	172	205	66.4	17		
72282	LAIF4	2,012	19	168	196	66.8	31		
72782	LAIC2	3,262	33	299	193	67.8	19		
72982	LAIC4	4,500	44	368	192	67.9	24		
80382	LAIM2	1,007	7	63	190	67.7	34		
80582	LAIM4	2,383	29	253	180	67.8	24		
81082	LA+Y1	3,000	32	259	160	68.0	12		
81382	LA+Y3	2,571	31	247	147	67.7	46		
81782	LA+U1	3,450	46	321	142	68.0	41		
82082	LA+Y2	3,005	31	231	120	68.8	39		
82482	LA+U3	1,467	22	160	118	69.7	35		
82782	LA+Y4	3,581	35	246	112	69.6	31		
83182	LA+U2	1,589	16	133	131	69.1	23		
90382	LA+U4	4,541	16	125	134	68.4	45		

The passage index is calculated daily as the ratio of the number recovered to the sampling effort and summed over days. Sampling effort was the average proportion of the total river flow discharged through turbine Unit 3 during the 10-hour period 2000-0600 h each day.

The average river flow volume and water temperature over the 10-day period following release of the marked group.

Table 4.--Summary of 1983 brand release and recovery data from groups of subyearling chinook salmon marked and released at McNary Dam and recaptured at John Day Dam. Travel time (median) is the number of days required to traverse the reservoir from McNary Dam tailrace to John Day Dam.

Release	Brand	Nu	ımber of fisl	h			Median travel
date	code	Released	Recovered		Flow ^b (kcfs)	Temperature ^b (°F)	time (days)
61683	LA7T1	4,839	41	601	243	55.5	11
62383	LA7T3	5,196	23	327	209	57.4	19
70183	LD7T1	5,010	28	421	196	59.8	15
70883	LA2L1	4,988	35	557	198	59.9	12
71383	LA2L3	5,005	20	333	217	61.0	8
71583	LD2L1	5,014	42	627	211	59.7	7
72083	LA2T1	5,019	60	700	212	63.2	19
72383	LA2T3	5,009	62	596	205	64.0	29
72783	LD2T1	4,659	41	374	202	64.4	25
72983	LA2X1	5,939	71	621	193	64.6	29
80583	LA2X3	4,657	60	499	171	66.2	24
81283	LA7S1	4,850	39	304	165	·68.2	28
81983	LA7S3	4,878	47	363	145	69.2	23
82683	LD7S1	5,641	54	417	127	66.7	15
90283	LD7S3	1,855	17	127	120	65.0	9

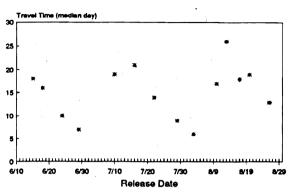
The passage index is calculated daily as the ratio of the number recovered to the sampling effort, and summed over days. Sampling effort was the average proportion of the total river flow discharged through turbine Unit 3 during the 10-hour period 2000-0600 h.

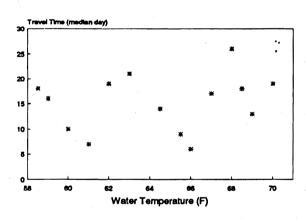
The average river flow volume and water temperature over the 10-day period following release of the marked group.

Table 5.--Correlation coefficients between median travel time and three variables are presented. Correlations include all data acquired in each of the 3 years. Data appear in Tables 2-4. Details are presented in Appendix Table A.

	· · · · · · · · · · · · · · · · · · ·		
Year	Release date	Variables Temperature	Flow
1981	0.191	0.203	-0.139
1982	0.707**	0.595**	-0.646**
1983	0.240	0.558*	-0.099

^{*} $0.01 \le P < 0.05$


^{**} P < 0.01


nς

n dev

0

Subyearling Chinook Salmon Travel Time 1981

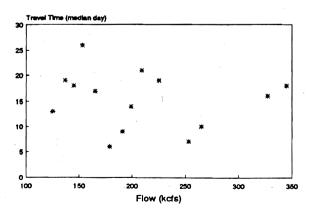
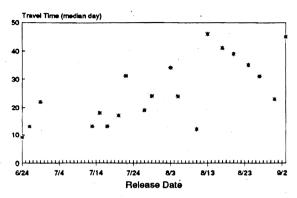
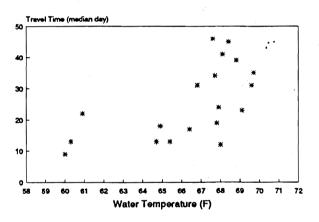




Figure 5.--Scattergrams of median travel times of freeze-branded groups vs release date, water temperature, and flow for 1981. Marked groups were released in the tailrace of McNary Dam and recovered at John Day Dam. Flows and temperatures were the 10-day means following release of each marked group.

Subyearling Chinook Salmon Travel Time 1982

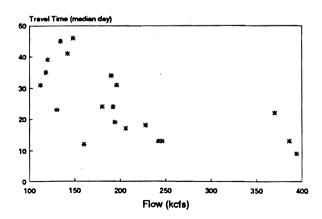
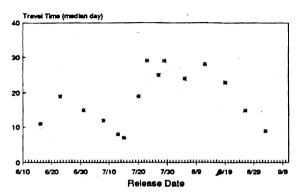
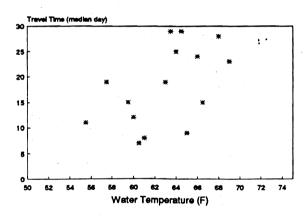




Figure 6.--Scattergrams of median travel times of freeze-branded groups vs release date, water temperature, and flow for 1982. Marked groups were released in the tailrace of McNary Dam and recovered at John Day Dam. Flows and temperatures were the 10-day means following release of each marked group.

Subyearling Chinook Salmon Travel Time 1983

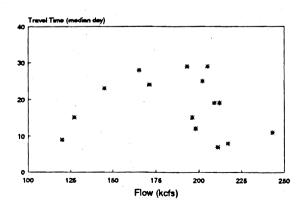


Figure 7.--Scattergrams of median travel times of freeze-branded groups vs release date, water temperature, and flow for 1983. Marked groups were released in the tailrace of McNary Dam and recovered at John Day Dam. Flows and temperatures were the 10-day mean following release of each marked group.

Table 6.--Regression models derived from stepwise multiple regression routine included in Statgraphics software. The modelling procedure was applied to (median) travel time presented in Tables 2-4. The Julian release date was used in the model.

Year	Model
1981	No variables were entered into the model
1982	Travel time = -54.46 + 0.38 (release date)
1983	Travel time = -107.62 + 3.53 (temperature) -0.47 (release date)

We further examined these data for evidence of relationships between travel time and the independent variables by blocking each year's data into three time-periods, then testing for correlations with each variable within each period. The first period extended through 9 July each year; this period included the first passage peak each year. The second period extended from 10 July through 8 August and bracketed the second passage peak each year. The third period extended from 9 August until the end of sampling each year. These analyses were inconclusive, for in many cases there were only three to five data points with which to describe a relationship. In many cases, correlation coefficients were large and often significant, particularly for the early and middle segments of each year's outmigration (Table 7, Appendix Table A). However, the sign of the coefficient changed among and within years, indicating the relationship between travel time and any of the variables could be either positive or negative (Table 7). No consistent relationships were evident.

Fish Distribution

Fish distribution within the reservoir was described using catch per unit effort (CPUE) (i.e., the average number of fish caught per net set) from purse seine sampling at fixed transects (Tables 8-10). Originally, nine transects were sampled. However, catches were so low at the three upstream transects (McNary tailrace, Irrigon, and Coyote Islands) that they were abandoned half-way through 1981. Fish distribution across each transect throughout the sampling period showed consistent patterns from year to year. At Goodnoe, Blalock, and Arlington chinook salmon tended to concentrate near the Washington shore with strongest tendencies apparent from August through November (Figs. 8-10, Tables 8-10). In the John Day forebay, the pattern is similar but seems to be more variable particularly in June and July. In contrast, at Willow Creek fish tend to concentrate near the Oregon shore except in September and November. At Crow Butte the highest CPUEs were observed again on the Washington

Table 7.--Correlation coefficients between the median travel time for marked groups of fish and the variable indicated. The number of data points (groups) appear in parenthesis. Each year's data were blocked into three periods: prior to 10 July, 10 July through 8 August, and after 8 August.

	Variables									
Year	Date of release	Water temperature	Flow							
1981										
Early	-0.995**(4)	-0.978* (4)	0.991**(4)							
Mid	-0.945* (5)	-0.944* (5)	0.906* (5)							
Late	-0.575 (5)	-0.297 (5)	0.461 (5)							
1982										
Early	-0.995 (3)	-0.995 (3)	0.999* (3)							
Mid	0.697* (9)	0.667* (9)	-0.747* (9)							
Late	0.188 (8)	-0.168 (8)	-0.262 (8)							
1983										
Early	-0.049 (4)	0.103 (4)	-0.407 (4)							
Mid	0.782* (7)	0.879**(7)	-0.559 (7)							
Late	-0.997**(4)	0.888 (4)	0.975(4)							

^{*} $0.01 \le P < 0.05$

^{**} P < 0.01

Table 8.--Catch per unit effort (subyearling chinook salmon/purse seine set) at six transects across John Day Reservoir, 1981. The proportion of each transect catch captured at the three sampling stations (Washington and Oregon shores, and middle) appear in parentheses.

\	Jun	ie/July	A	August September		September		tober	Nov	ember
John Day foreb	av				,					
Oregon	243	(0.16)	54	(0.11)	13	(0.04)	33	(0.14)	4	(0.10)
Middle	619	(0.41)	80	(0.17)	12	(0.04)	24	(0.10)	9	(0.23)
Washington	665	(0.43)	343	(0.72)	299	(0.92)	180	(0.76)	27	(0.68)
Goodnoe									·	
Oregon	39	(0.09)	41	(0.03)	32	(0.07)	20	(0.26)	11	(0.21)
Middle	175	(0.40)	3	(0.00)	34	(80.0)	12	(0.16)	10	(0.19)
Washington	227	(0.51)	1,565	(0.97)	365	(0.85)	45	(0.58)	31	(0.60)
Blalock										
Oregon	90	(0.29)	264	(0.22)	21	(0.06)	17	(0.20)	- 5	(0.13)
Middle	118	(0.38)	215	(0.18)	20	(0.06)	9	(0.11)	7	(0.18)
Washington	102	(0.33)	721	(0.60)	296	(0.88)	59	(0.69)	28	(0.70)
Arlington										
Oregon	75	(0.13)	51	(0.11)	17	(0.03)	13	(0.12)	6	(0.12)
Middle	83	(0.14)	114	(0.24)	101	(0.17)	19	(0.17)	3	(0.06)
Washington	442	(0.74)	301	(0.65)	466	(0.80)	80	(0.71)	43	(0.83)
Willow Creek										
Oregon	121	(0.70)	76	(0.55)	54	(0.50)	126	(0.67)	19	(0.37)
Middle	33	(0.19)	27	(0.20)	26	(0.24)	28	(0.15)	5	(0.10)
Washington	20	(0.11)	35	(0.25)	29	(0.27)	33	(0.18)	27	(0.53)
Crow Butte										
Oregon	88	(0.22)	136	(0.16)	87	(0.14)	22	(0.13)	11	(0.23)
Middle	161	(0.41)	367	(0.44)	206	(0.33)	79	(0.46)	16	(0.34)
Washington	146	(0.37)	335	(0.40)	329	(0.53)	71	(0.41)	20	(0.43)

Table 9.--Catch per unit effort (subyearling chinook salmon/purse seine set) at six transects across John Day Reservoir, 1982. The proportion of each transect catch captured at the three sampling stations (Washington and Oregon shores, and middle) appear in parentheses.

	Jun	e/July	Aı	ugust	Sep	tember	Oc	tober	Nov	ember
John Day fore	bay									
Oregon	393	(0.34)	84	(0.17)	9	(0.53)	55	(0.29)	2	
Middle	426	(0.36)	119	(0.24)	5	(0.29)	31	(0.54)		
Washington	354	(0.30)	283	(0.58)	3	(0.18)	102	(0.54)	33	
Goodnoe		· ·								
Oregon	163	(0.13)	14	(0.03)	37	(0.13)	47	(0.22)	12	(0.18)
Middle	398	(0.31)	39	(0.08)	40	(0.14)	39	(0.19)	21	(0.31)
Washington	707	(0.56)	417	(0.89)	214	(0.74)	123	(0.59)	35	(0.51)
Blalock										
Oregon	101	(0.12)	152	(0.26)	32	(0.11)	55	(0.25)	7	(0.13)
Middle	516	(0.62)	139	(0.24)	58	(0.20)	73	(0.33)	8	(0.15)
Washington	210	(0.25)	294	(0.50)	202	(0.69)	95	(0.43)	39	(0.72)
Arlington							·			
Oregon	1,294	(0.40)			7	(0.04)	26	(0.21)	. 7	(0.13)
Middle	207	(0.06)	63		29	(0.18)	13	(0.11)	8	(0.15)
Washington	1,762	(0.54)	316		129	(0.78)	83	(0.68)	39	(0.72)
Willow Creek										
Oregon	246	(0.53)	440	(0.69)	14	(0.28)	263	(0.60)	48	(0.28)
Middle	80	(0.17)	107	(0.17)	14	(0.28)	69	(0.16)	22	(0.13)
Washington	139	(0.30)	89	(0.14)	22	(0.44)	108	(0.25)	101	(0.59)
Crow Butte										
Oregon	58	(0.16)		h	108	(0.30)	54	(0.20)	39	(0.32)
Middle	100	(0.28)			92	(0.25)	37	(0.14)	14	(0.12)
Washington	196	(0.55)			161	(0.45)	273	(0.67)		(0.56)

Table 10.--Catch per unit effort (subyearling chinook salmon/purse seine set) at ix transects across John Day Reservoir, 1983. The proportion of each transect catch captured at the three sampling stations (Washington and Oregon shores, and middle) appear in parentheses.

	June/July	Aug	gust	September		
John Day forebay						
Oregon	612 (0.34)	129	(0.18)	26	(0.15)	
Middle	454 (0.25)	115	(0.16)		(0.15)	
Washington	723 (0.40)	467			(0.70)	
Goodnoe					•	
Oregon	20 (0.02)	72	(0.09)	14	(0.13)	
Middle	123 (0.13)	101	(0.12)	18	(0.16)	
Washington	836 (0.85)	671	(0.80)	79	(0.71)	
Blalock						
Oregon	288 (0.33)	267	(0.23)	28	(0.17)	
Middle	150 (0.17)	142	(0.13)	21	(0.13)	
Washington	440 (0.50)	731	(0.64)	116	(0.70)	
Arlington			•			
Oregon	383 (0.11)			53	(0.16)	
Middle	79 (0.02)			26	(80.0)	
Washington	3,000 (0.87)	1,786	(100)	253	(0.76)	
Willow Creek				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
Oregon	795 (0.43)			126	(0.18)	
Middle	249 (0.14)			204	(0.29)	
Washington	799 (0.43)	160	(100)	375	(0.53)	
Crow Butte	•					
Oregon	276 (0.18)	73	(0.05)	76	(0.11)	
Middle	819 (0.52)	452	(0.28)		(0.23)	
Washington	468 (0.30)	1,116	(0.68)		(0.66)	

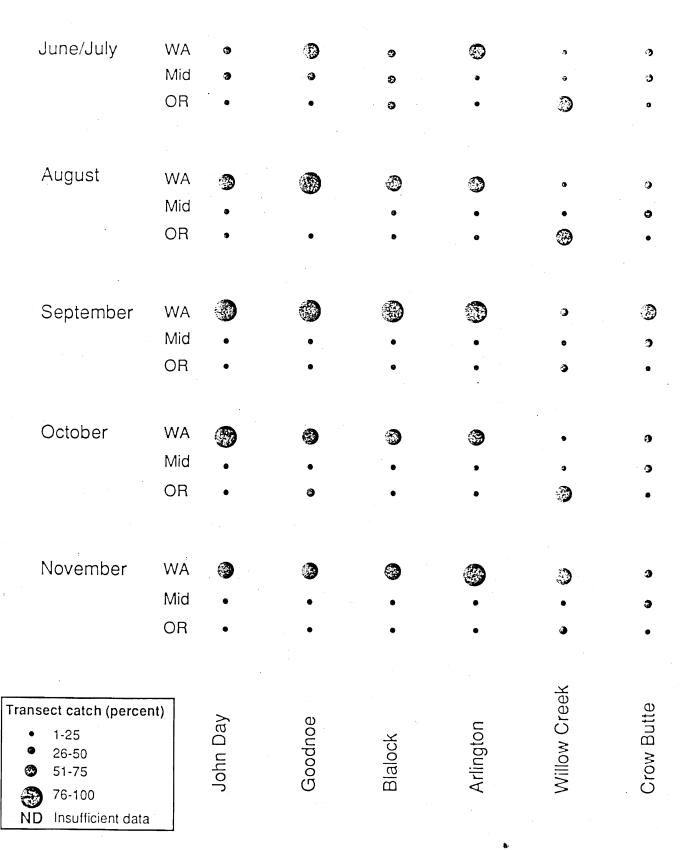


Figure 8.--Relative abundance, within transects, of subyearling chinook salmon caught with purse seine. Three stations were sampled at each transect, one station near each shore and one in the middle of the reservoir. Circle size represents the percentage of the total transect catch caught at the station during the months indicated in 1981.

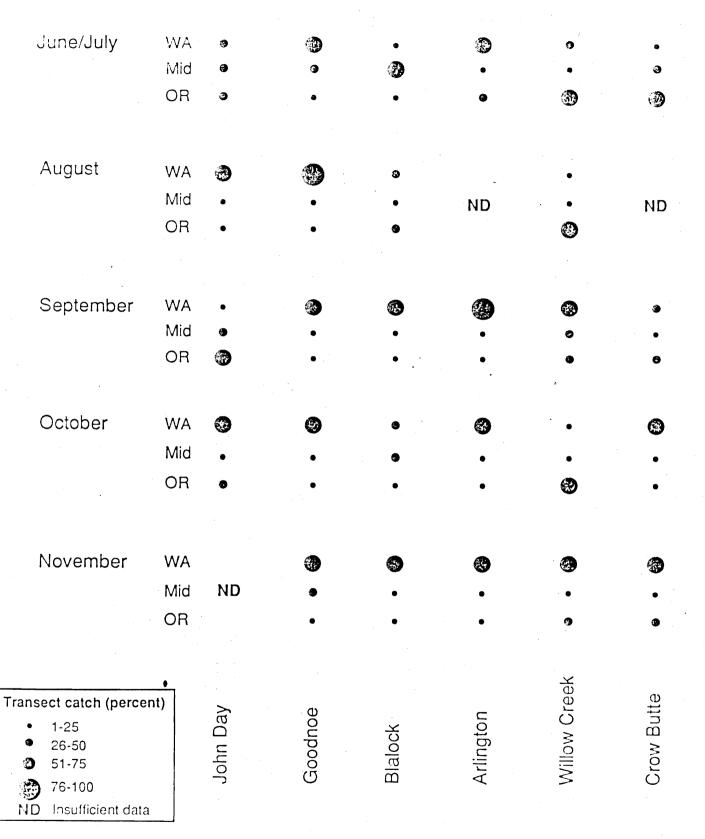


Figure 9.-Relative abundance, within transects, of subyearling chinook salmon caught with purse seine. Three stations were sampled at each transect, one station near each shore and one in the middle of the reservoir. Circle size represents the percentage of the total transect catch caught at the station during the months indicated in 1982.

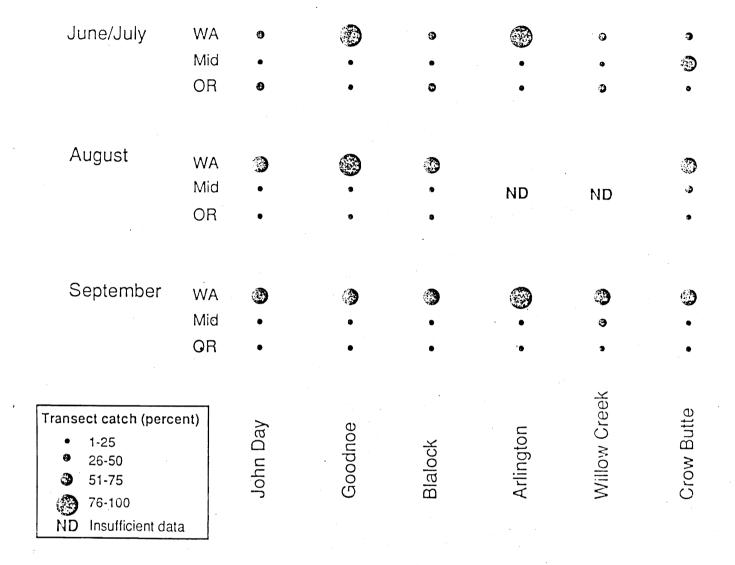


Figure 10.--Relative abundance, within transects, of subyearling chinook salmon caught with purse seine. Three stations were sampled at each transect, one station near each shore and one in the middle of the reservoir. Circle size represents the percentage of the total transect catch caught at the station during the months indicated in 1983.

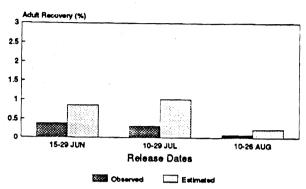
side of the river but the concentration was not as great as at the downstream sites (Figs. 8-10).

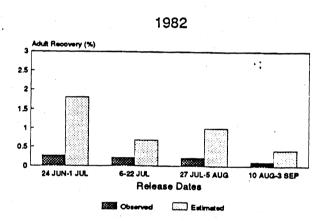
Fish concentrations along the length of the reservoir show no consistent patterns and vary from year to year as well as seasonally (Tables 8-10). Fish moving in schools throughout the reservoir may explain this observation. Over the 3 years, CPUEs ranged from 2 fish per set (November 1982) to a maximum of 3,000 per set in June/July 1983 (Tables 9 and 10).

Mark-recovery data from fish which were branded in the body of the reservoir onboard the seine vessel and then released into the reservoir indicated that a large portion of subyearling chinook salmon mill within the reservoir rather than move continually downstream. Of 300 brand recoveries caught by purse seine, 163 (54%) were recaptured at or upstream from their original release site. In 1982, one extreme example was a fish released at RKm 348 which was recaptured 104 days later at RKm 430, 82 km upstream from the release site.

ADULT CONTRIBUTION

Adult contribution data show strong intra- and interannual patterns. Within any year, the chinook salmon which leave John Day Reservoir early in the summer contribute more than those that leave later. This pattern is evident in both the observed as well as the estimated adult contribution (Table 11, Fig. 11). Adults observed in the various fisheries and terminal sampling locations were as reported in the NMFS database (Appendix B). The overall adult contribution to the various fisheries and all terminal sampling locations was estimated (expanded for sampling effort) and reported by PMFC through 28 August 1989 (Appendix C). Based on those data, estimated adult contribution ranged from 0.23 to 1.02%, 0.41 to 1.80%, and 0.26 to 2.75% for fish migrating through John Day Reservoir in the summers of 1981, 1982, and 1983, respectively (Table 12, Fig. 11).


 \tilde{S}


Table 11.-Observed and estimated adult recoveries from subyearling chinook salmon tagged at McNary Dam and released in the tailrace. The observed numbers are those reported in the NMFS CWT database as of 26 July 1989; they do not include any trap fish which were released inriver. The estimated numbers are those reported by PMFC, as of 28 August 1989. Raw data are presented in Appendix Table C.

Release	Number	CWT	Observed/	Number recovered							Total recovered	
dates	released	code	estimated	1982	1983	1984	1985	1986	1987	1988	n	%
1 <u>981</u>									•			
15-29 Jun	17,726	031731	О	3	6	42	14	2	0	0	67	0.38
0 20 3 121	21,120	00-10-	Ē	$\mathbf{\hat{2}}$	$2\overline{4}$	96	29	$ar{f 2}$	Ŏ	Ö	153	0.86
10-29 Jul	$42,\!580$	031732	O	3	15	78	33	3	0	0	132	0.31
			${f E}$	68	61	164	132	7	0	0	433	1.02
10-26 Aug	16,785	031730	0	1	0	8	5	0	0	0	13	0.08
10-20 1145	10,700	001100	$\overset{f o}{f E}$	3	ŏ	25	11	0	Ö	ŏ	39	0.23
			-	J		20		Ū	Ů	Ū	00	0.20
<u>1982</u>	0.005	001000	0				10	~	•	0	0.0	0.05
24 Jun-1 Jul	8,667	231609	O E	0 0	${ {1} \atop {2} }$	4 15	13	5 85	0	0	23	0.27
			E	U	4	19	54	69	U	0	156	1.80
6-22 Jul	18,864	231611	O	0	1	3	25	9	1	0	39	0.21
	,		${f E}$	0	0	11	80	32	4	0	128ª	0.68
. T] ~ A	11 150	001010	•	•	0	0	15	0	•			0.04
27 Jul-5 Aug	11,152	231613		0	0	3	17	3	0	0	23	0.21
			E	0	0	12	85	15	0	0	112	1.00
10 Aug-3 Sep	23,243	231615	О	0	1	1	19	5	0	0	26	0.11
•	,		\mathbf{E}	0	3	1	77	14	0	0	95	0.41
<u>1983</u> 16 Jun-1 Jul	15,057	231623	0	0	0	6	54	51	17	0 ,	128	0.85
io aun-i aui	15,057	201020	E	0	0	18	5 9	165	57	0	299	1.99
			13	U	U	10	00	100	01	v	200	1.55
6-15 Jul	15,010	231627		0	0	5	17	33	26	2	83	0.55
			${f E}$	0	0	10	81	231	83	6	413	2.75
20-27 Jul	14,690	231630	O	0	0	1	3	21	13	4	42	0.29
20-27 Jul	14,030	201000	E	0	0	6	10	51	33	17	117	0.23
			12	U	U	U	10	01	00	11	111	0.00
9 Jul-5 Aug	10,601	231633		0	0	0	4	10	7	0	21	0.20
			${f E}$	0	0	0	12	32	16	0	60	0.57
34 33	17 000	001004	0	0		0	0	-	0	0	0	0.05
2 Aug-2 Sep	17,292	231624	O E	0	0 0	0	0 0	$\begin{matrix} 5 \\ 24 \end{matrix}$	$\begin{array}{c} 3 \\ 21 \end{array}$	0	8	0.05
			r	U	U	U	U	44	41	U	45	0.26

a/ Does not include juvenile fish from code 231611 sampled at Jones Beach and reported in PMFC database.

ADULT RECOVERY

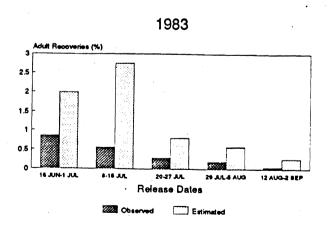


Figure 11.--Total adult recovery from coded-wire tag groups released in 1981, 1982, and 1983. Detailed data are presented in Appendixes B and C.2. The number observed were those actually sampled in each fishery and terminal sampling point. The estimated value is based on the PMFC expansion for sampling effort.

Table 12.--Adult recovery data for CWT groups which were blocked into three similar time periods corresponding to the date of marking: June (15 June to 1 July), July (6 July-5 August), and August (10 August to 3 September). Data are from PMFC database 28 August 1989.

		Estimate	ed recoveries
	Number released	No.	%
1981			
June	17,726	153	0.9
July	42,580	433	1.0
August	16,785	39	0.2
1982			
June	8,667	156	1.8
July	30,016	240	0.8
August	23,243	95	0.4
1983			
June	15,057	299	2.0
July	40,301	590	1.5
August	17,292	45	0.3
3	•		

To determine if observed differences in intra-annual recovery proportions were significant, we used chi-square tests. Each year's data were blocked into three periods: fish marked in June (through 1 July), July (6 July through 5 August), and August (6 August through 3 September). Within each year, the groups marked earliest contributed significantly more than those marked later. The only exception was the June vs July comparison in 1981 (Table 13).

Another obvious trend in the adult recovery data is the steady increase in adult contribution over the 3-year study period. The highest estimated adult recovery for any CWT-marked group increased steadily from 1.0 to 1.8 to 2.8% during the outmigrant years 1981-1983 (Table 11). We compared adult recovery proportions among years for June, July, and August outmigrants using chi-square statistics. For June migrants, adult contribution from 1982 and 1983 were significantly greater than 1981 (Table 14). For July outmigrants, adult contribution in 1983 was significantly greater than in 1982, and 1982 was significantly greater than 1981 (Table 14). For the August outmigrants, 1982 exhibited adult returns which were significantly greater than both 1981 and 1983 (Table 14).

DISCUSSION

A primary objective of this research was to assess the effects of flow volumes on the migration speed of subyearling chinook salmon through John Day Reservoir.

Activities which were conducted to evaluate the nature of the relationship were generally inconclusive. There are several reasons for this. First, John Day Dam afforded poor recovery capability for branded fish which were released at the head of the reservoir to describe travel time. Only 0.3 to 1.3% of any marked group was recovered at the dam. There were three groups from which less than 10 recoveries were observed (Tables 2 and 3). Also, all data were generated using the catch from a single turbine (Unit 3) at the dam. Such a limitation is a concern when assuming the

Table 13.--Results from chi-square tests on intra-annual comparisons of adult recovery data presented in Table 12.

Comparison	Chi-square	Probability
1981		
June vs July	3.08	0.0795
June vs August	62.00	0.0000
July vs August	93.95	0.0000
1982		
June vs July	66.42	0.0000
June vs August	156.57	0.0000
July vs August	32.02	0.0000
1983		
June vs July	18.89	0.0000
June vs August	227.78	0.0000
July vs August	160.80	0.0000

Table 14.--Results from chi-square tests on interannual comparisons of adult recovery data presented in Table 12.

Comparison	Chi-square	Probability
June 81 vs 82	44.15	0.0000
June 81 vs 83	75.46	0.0000
June 82 vs 83	1.01	0.3149
July 81 vs 82	9.05	0.0026
July 81 vs 83	33.95	0.0000
July 82 vs 83	65.11	0.0000
August 81 vs 82	9.09	0.0026
August 81 vs 83	0.27	0.6038
August 82 vs 83	6.35	0.0117

data constitute a random sample. Unfortunately, this unit was, and still is the only sampling device available at the site. Furthermore, over the course of any single year's outmigration, it was only possible to brand 14 to 20 separate groups. This number would have been sufficient to describe seasonal patterns, but too small to describe relationships for date-blocked subsets within each year's outmigration.

Secondly, the study was not designed to identify the migratory characteristics of individual races or stocks within the composite population. It is entirely possible that certain stocks respond to flows or water temperature in different fashions.

Another difficulty is the inability to isolate river flow from other variables, particularly water temperature or the release date of the marked group. The latter is important because fish size and physiological development change over the course of the summer and may have a pronounced effect on migratory behavior. However, the study design could not assess these factors. At the time this study was initiated, the understanding of the relationship between physiological development and specific migratory behaviors was poor. Even now, specific details regarding smolt development and migration speed are poorly defined, particularly for subyearling chinook salmon.

It is essential that any future analyses address these issues if the flow requirements of subyearling chinook salmon are to be adequately defined.

The adult contribution data show two definite trends. First, migrants traversing the reservoir early in the summer contribute more in terms of adult production than fish that migrate later in the summer (Fig. 11). This pattern was consistent for each of the 3 years, 1981-1983. One generally accepted explanation may be that as water temperature increases over the course of the summer predator activity increases and juvenile salmon incur increasing levels of predation related mortality. This process has been well documented within John Day Reservoir (Poe and Rieman 1988). Another possible explanation is that exposure of smolts to elevated temperatures may exacerbate the expression of latent diseases.

A second pattern apparent in the adult contribution data is the increase in adult contribution observed for the 1981-1983 outmigrations. The overall adult contribution from fish marked during those outmigration years increased steadily from 1.0 to 1.8 to 2.8%. Upriver bright chinook salmon which constituted a large portion of the population reflect the same pattern. Adult returns to the Columbia River for this stock increased steadily from 131,000 to 195,000 to 281,500 to 419,000 for the years 1984 through 1987, respectively (Anonymous 1989).

In terms of adult contribution there is no evidence to suggest a relationship between river flow volumes that prevailed during the 1981-1983 outmigrations and associated adult returns. However, in the context of recent summerflow volumes, the flows during 1981-1983 were relatively high (Fig. 2). In 1987 and 1988, summerflow volumes were particularly low, with monthly averages ranging from 103.4 (August) to 108.3 kcfs (July), and 88.8 (August) to 111.8 kcfs (September) in each year, respectively. Whether flows at these reduced levels may have a deleterious effect on adult contribution is uncertain at this time.

SUMMARY AND CONCLUSIONS

1) It was not possible to define a relationship between flow and migration speed of subyearling chinook salmon through John Day Reservoir. In our opinion, this is in a large part due to low mark-recoveries at John Day Dam prior to installation of submersible traveling screens (STS's). Also, specific effects attributable to flow were difficult, if not impossible, to isolate. This is because flow, water temperature, fish size, stock composition, and physiological status of the population change over the course of each summer's outmigration. Any future investigations, with similar objectives, need to address this problem.

² Monthly average flows were provided by the Fish Passage Center as reported by the U.S. Army Corps of Engineers.

- 2) The distribution and movement of juveniles within the reservoir indicated that they ranged the length of the reservoir and did not exhibit consistent displacement downstream.
- 3) CWT data indicated consistent intraseasonal patterns in adult contribution. Early summer migrants contributed greater adult returns than juveniles which migrated through the reservoir later in the summer.
- 4) CWT data indicated that adult returns from the three outmigration years increased from year to year. The greatest contribution estimated for a particular CWT group in each year was 1.0, 1.8, and 2.8%, for 1981, 1982, and 1983, respectively.

LITERATURE CITED

Anonymous.

1989. Report concerning the 1989 in-river fall commercial harvest of Columbia River fall chinook salmon, summer steelhead, and sturgeon. Document presented by Technical Advisory Committee (TAC).

Johnsen, R. C., and C. W. Sims.

1973. Purse seining of juvenile salmon and trout in the Columbia River estuary. Trans. Am. Fish. Soc. 102(2):341-345

Mighell, J. L.

1969. Rapid cold-branding of salmon and trout with liquid nitrogen. J. Fish. Res. Board Can. 26:2765-2769.

Miller, D. R., and C. W. Sims.

1983. Effects of flow on the migratory behavior and survival of juvenile fall and summer chinook salmon in John Day reservoir. Report to Bonneville Power Administration, 25 p. Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.

Miller, D. R., and C. W. Sims.

1984. Effects of flow on the migratory behavior and survival of juvenile fall and summer chinook salmon in John Day reservoir. Report to Bonneville Power Administration, 23 p. Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.

Poe, T. P., and B. E. Rieman.

1988. Predation by resident fish on juvenile salmonids in John Day reservoir, 1983-1986. Final report to Bonneville Power Administration, 377 p.

Raymond, H. L.

1979. Effects of dams and impoundments on migrations of juvenile chinook salmon and steelhead from the Snake River, 1966 to 1975. Trans. Am. Fish. Soc. 108(6):529-565.

Raymond, H. L., C. W. Sims, R. C. Johnsen, and W. W. Bentley.

1975. Effects of power peaking operations on juvenile salmon and steelhead trout migrations, 1974. Report to U.S. Army Corps of Engineers, 46 p. Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.

Sims, C. W., R. C. Johnsen, and W. W. Bentley.

1976. Effects of power peaking operations on juvenile salmon and steelhead trout migrations, 1975. Report to U.S. Army Corps of Engineers, 36 p. Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.

Sims, C. W., and D. R. Miller.

1982. Effects of flow on the migratory behavior and survival of juvenile fall and summer chinook salmon in John Day reservoir. Report to Bonneville Power Administration, 22 p. Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.

- Sims, C. W., and F. J. Ossiander.
 - 1981. Migrations of juvenile chinook salmon and steelhead trout in the Snake River from 1973 to 1979. A research summary. Report to U.S. Army Corps of Engineers, 31 p. Available from Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112-2097.
- Sims, C. W., J. G. Williams, D. A. Faurot, R. C. Johnsen, and D. A. Brege.
 1981. Migrational characteristics of juvenile salmon and steelhead in the
 Columbia River basin and related passage research at John Day Dam. Final
 report to U.S. Army Corps of Engineers, Vol. I and II, 61 p. Available from
 Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA
 98112-2097.

APPENDIX A.--Data output from stepwise regression routine in Statgraphics which was used to investigate the relationship between flow and travel time.

1981

Full Multiple Regression Model Using Flow, Temperature, And Date

Independent Variable	coefficient	std. error	sig. level
Constant	-120.17	168.5214	0.4921
McNary flow	0.08	0.1034	0.4829
McNary temperature	2.16	4.6132	0.6500
Julian date	0.10	0.7867	0.9054
$R^2(adj.) = 0.0000$			

Multiple Regression Model Using Only Statitistically Significant Variables Selected By A Stepwise Procedure

Independent Variable	coefficient	std. error	sig. level
Constant	15.21	1.5234	0.000
$R^2(adi_a) = 0.0000$			

Sample Correlations Between Variables For Full Data Set

	Temperature	Flow	Median Travel Time
Date	.9955	9701	.1912
	(14)	(14)	(14)
	(.0000)	(.0000)	(.5126)
Temperature	•	9660	.2034
		(14)	(14)
		(.0000)	(.4854)
Flow			1328
			(14)
			(.6508)

Sample Correlations Between Variables And Median Travel Time For Early, Middle, And Late Release Periods

Early	Date 9949 (4) (.0051)	Temperature9784 (4) (.0216)	Flow .9912 (4) (.0088)
Middle	9450	9435	.9059
	(5)	(5)	(5)
	(.0154)	(.0160)	(.0341)
Late	5753	2966	.4609
	(5)	(5)	(5)
	(.3103)	(.6279)	(.4345)

1982

Full Multiple Regression Model Using Flow, Temperature, And Date

Independent Variable	coefficient	std. error	sig. level
Constant	289.61	296.2840	0.3429
McNary flow	-0.16	0.1498	0.3126
McNary temperature	-4.72	3.8425	0.2368
Julian date	<u> </u>	0.2471	0.1389
P(1)di 1- 0 0574			

Multiple Regression Model Using Only Statisitically Significant Variables Selected By A Stepwise Procedure

Independent Variable	coefficient	std. error	sig. level
Constant	-54.46	18.9638	0.0101
Julian date	0.38	0.0889	0.0005
R^2 (adi)= 0.4713			

Sample Correlations Between Variables For Full Data Set

	Temperature	Flow	Median Travel Time
Date	.9093	9304	.7065
	(20)	(20)	(20)
	(.0000)	(.0000)	(.0005)
Temperature		9850	.5948
		(20)	(20)
		(.0000)	(.0057)
Flow			6457
			(20)
			(.0021)

Sample Correlations Between Variables And Median Travel Time For Early, Middle, And Late Release Periods

	Date	<u>Temperature</u>	<u>Flow</u>
Early	9946	9946	.9999
	(3)	(3)	(3)
	(.0659)	(.0659)	(.0112)
Middle	.6974	.6669	7465
	(9)	(9)	(9)
	(.0367)	(.0498)	(.0209)
Late	.1882	1676	2615
	(8)	(8)	(8)
	(.6556)	(.6919)	(.5314)

1983

Full Multiple Regression Model Using Flow, Temperature, And Date

<u>Independent Variable</u>	<u>coefficient</u>	std. error	sig. level
Constant	-115.17	46.4933	0.0307
McNary flow	0.02	0.0974	0.8457
McNary temperature	3.48	0.8236	0.0014
Julian date	-0.44	0.2228	0.0767
P(1)d; 1= 0 5010			

Multiple Regression Model Using Only Statistically Significant Variables Selected By A Stepwise Procedure

Independent Variable	coefficient	std. error	sio. level
Constant	-107.62	25.8788	0.0013
McNary temperature	3.53	0.7479	0.0005
Julian date	0.47	0.1301	0.0035
$R^2(adi_*) = 0.6153$			

Sample Correlations Between Variables For Full Data Set

	Temperature	Flow	Median Travel Time
Date	.8997	9076	.2403
	(15)	(15)	(15)
•	(.0000)	(.0000)	(.3883)
Temperature		7576	.5578
		(15)	(15)
		(.0011)	(.0307)
Flow			0986
			(15)
		1	(.7266)

Sample Correlations Between Variables And Median Travel Time For Early, Middle, And Late Release Periods

	Date	Temperature	Flow
Early	0485	.1032	4070
	(4)	(4)	(4)
•	(.9513)	(.8966)	(.5931)
Middle	.7822	.8793	5586
	(7)	(7)	(7)
	(.0377)	(.0023)	(.1924)
Late	9965	.8875	.7754
	(4)	(4)	(4)
	(.0035)	(.1125)	(.0246)

APPENDIX B.--Observed adult CWT recoveries from subyearling chinook salmon marked at McNary Dam and released in the tailrace during the summers 1981-1983. Data from the NMFS database. Only CWT verified by NMFS are reported here. No adults which were intercepted at dams, had brands read, and were released inriver are included in these data. Data were processed on 30 August 1989.

1981 MCNARY J.D.POOL CONTROL BELOW MCNARY

FALL CHINOOK

Frands Osed: LAID1 LAID2 LAID3 LAID4 Mire Codes Osed: 231731 231731 231731

							NOMBER	RELEASED:	17726
BECOVERY AREA	1981	YEAR OF 1982	RETURN 1983	1984	1985	1996		TOTAL	% RETURN
RIVER SYSTEM TRAPS BONNEVILLE TRAP MCNARY TRAP LOWER GRANITE TRAP PRIEST RAPIDS TRAP	3000	racyrucy.	9778	4 70 70 70 70 70 70 70 70 70 70 70 70 70	4676969	30 30 30 30 30 40 40		8.50	7.045 7.007 7.008 7.008 7.008 9.008
OCEAN FISHERIES ALASKA BRITISH COLUMBIA MASHINGTON OREGON CALIFORNIA OTHER	ರಾವಾದಾದಾದಾದಾರು	く そう そうそう さんさい	55555	117-00000	3 1 1 9 9	*** មិន	•	20 13 10 0	8.113 8.075 9.075 9.020 9.020 9.020 9.020 9.020 9.020
RIVER SPORT COLUMBIA R. BELOW SNAKE R. COLUMBIA R. ABOVE SNAKE R. MENATCHEE R. SNAKE R.	\$ \$ \$	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	300000	9 9		7 7 7 7 7 7 7 8		0 1 0	0.000 0.000 0.000 0.000 0.000
RITER COMMERCIAL COMMERCIAL NET	3	3	1	1	9	3		2	0.011
INDIAN FISHERY FALL INDIAN MET	ð	3	3	5	2	1		ę	0.045
HATCHERIES PRIEST RAPIDS H.	ą	1	e	8	3	3		12	8.368
STREAM SURVEY OTHER STREAMS	Ø	ð	I	2	Ø	3		Ž	3.811
TOTALS	. Ø	3	6	42	14	2		67	Ø.378
FERCENT OF RECOVERY %	0.0	4.5	9.0	62.7	23.9	3.0	•		

Master File Date : 30 August 1989 RELEASE GROUPS INCLUDED: 8101A

1981 MCNARY

TRANS CONTROL

BELOW MCNARY

FALL CHINOOK

Brands Used: LAIM1 LAIM3 LAIM2 LAIM4 Wire Codes Used: 031732 031732 031732 031732

				•		NUMBER RELEASED:	42590
1981	YEAR OF B 1982	ETURN 1983	1984	1985	1986	TOTAL	% RETURN
000	33000	9 9 9	19 Ø Ø	6000	ನ್ನಾ ಮನೆಸಿನ್ನಾ	25 55 55	3.050 3.050 3.050 3.000 3.000 3.000 3.000
50000000	0100000	365000000000000000000000000000000000000	20 6 1 1 0	ಗು ಬಂದಿಗಳು ಮುಮ್ಮದ್ದಾಗು	4 - 4 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7		7.722 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777
ø	Q	3	3	3	Ø	ð	2.200
ð	0	Ø	9	1	3	10	ð.523
g	9	5	13	11	2	31	3.375
I	Ø 1	Ø Ø	1.6	3 1	3	1.8	3.000
в	1	2	2	1	3	ò	3.814
ð	3	15	78	33	3	132	2.310
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 0	0 3 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 1 0 1 0 6 0 1 0 6 0 1 0 6 0 1 0 6 0 1 0 6 0 1 0 6	0 0 19 6 0 0 0 0 0	0 0 0 19 6 0	1981 YSAR OF RETURN 1982 1983 1984 1985 1986 TOTAL 0 3 0 19 6 3 25 3 25 3 25 3 25 3 20 3 3 20 3 3 20 3 3 20 3 20 3 20 3 3 3 3 3<

Master File Date : 30 August 1989 BELEASE GROUPS INCLUDED: 8108A

1981 MCNARY J.D.POOL CONTROL BELOW MCNARY

FALL CHINOOK

							NUMBER RELEASED:	16785
RECOVERY AREA	1981	YEAR OF 1982	RETURN 1983	1984	1985	1986	TOTAL	% RETURN
RIVER SYSTEM TRAPS BONNEVILLE TRAP MCNART TRAP LOVER GRANITE TRAP PRIEST PARIDS TRAP		9 8 8	9 9 9	8 3 3 3	1 9 9	TO CONTRACTO		0.006 0.000 0.000 0.000
OCEAN FISHERIES ALASEA ERITISH COLUMBIA WASHINGTON OREGON CALITORNIA OTEER	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	31355	93999	220000	211000000	ಪರ್ಧಿಸಿಕೆ ಸಂಪರ್ಧಿಕರಿಗೆ	· • • • • • • • • • • • • • • • • • • •	0.024 0.024 0.000 0.000 0.000
RIVER SPORT	3	\overline{v}	Ø	0	Ø	3	•	בהה ב טשט. ש
RIVER COMMERCIAL COMMERCIAL NET	\mathfrak{d}	3	Ø	1	e e	3	1	Ø.C26
INDIAN FISHERY FALL INDIAN KET	Ø	B	ð	2	1 .	3	;	0.018
HATCHERIES WELLS H.	3	r v	3	1	Ø	ø	1	0.036
STREAM SURVEY	8.	3	3	2	ø	. Ø	ą	3.220
TOTALS	3	1	0	8	5	2	14	g. 283
PERCENT OF RECOVERY	3 0.0	7.1	0.0	57.1	35.7	3.8		

Master File Date : 30 August 1989 RELEASE GROUPS INCLUDED: 3205A

1982 MCNARY

TRANS CONTROL

BELOW MCNARY

FALL CHINOOK

Brands Used: LAH 1 LAH 2 LAIF1 LAIF3 Wire Codes Used: 231609 231609 231609 231609

							NUMBER	RELEASED:	8867
RECOVERY AREA	1982	YEAR OF 1983	RETURN 1984	1985	1986	1987		T0745	% RETURN
RIVER SYSTEM TPAPS BONNEVILLE TPAP MCNARY TPAP LOWER GRANITE TRAP PRIEST RAPIDS TRAP	13 (\$) (\$)	Ø Ø Ø	9 3 8	1 3 9	G	and			8.812 3.833 3.833 3.833
OCEAN FISHERIES ALASKA BRITISH COLUMBIA WASHINGTON OREGON CALIFORNIA OTHER	000000000000000000000000000000000000000	9 1 9 9 9	82 99 99	4 2 9 9 9	11 20 20 20 20 20 20 20 20 20 20 20 20 20	50 TO TO TO TO TO		u Seera proprioris	0.958 0.969 0.900 0.200 2.900 0.200
RIVER SPORT COLUMBIA R. BELCH SNAKE R. COLUMBIA R. ABOVE SNAKE R. WENATCHEE R. SNAKE R.		9 9 9	Ø Ø Ø	Ø 1 9 0	30 a b a b a b a b a b a b a b a b a b a	. 9 9 9		TO CONTRA	8.800 8.810 8.828 8.828
RIVER COMMERCIAL COMMERCIAL NET	3	3	1	1	3	9		÷	Ø.023
INDIAN FISHERY FALL INDIAN NET	3	Ø	ð	2	3	${\mathfrak g}$			् इ.स्ट्र
HATCHERIES PRIEST RAPIDS H.	9	ð	. 1.	1	3	a		. :	3.323
STREAM SURVEY OTHER STREAMS	Ø	Ø	3 .	1	. 3	3		:	J.912
TOTALS PERCENT OF RECOVERY	· 0	1	4	13 56.5	5 21.7	ð 3.3		23	Ø.265

1982 MCNARY TRANS CONTROL BELOW MCNARY

FALL CHINOOK

Brands Used: LAIC1 LAIC3 LAIM1 LAIM3 LAIF2 LAIF4 Wire Codes Used: 231611 231611 231611 231611 231611

							NUMBER	RELEASED:	18844
RECOVERY AREA	1982	YEAR OF 1 1993	RETURN 1984	1985	1986	1937		TOTAL	3 RETURN
RIVER SYSTEM TRAPS BONNEVILLE TRAP HCNARY TRAP LOWER GRANITE TRAP PRIEST RAPIDS TRAP	9 9 9 9	Ø 9 0	Ø Ø Ø	1 3 8		ಡಾಗ್ ಗ್ರಾಮ		೧ ಗಡುಗುಡು	a. a11 a. a2a a. a2a a. a3a a. a33
OCEAN FISHERIES ALASKA BRITISH COLUMBIA WASHINGTON OREGON CALIFORNIA OTHER	30 69 32 30 AV 30	1 0 0 0 0	9 2 9 9	6300	+ + n o mo mo mo no ro	สมัสมสมสมาของ		0.19-17-17-17-17-17-17-17-17-17-17-17-17-17-	
RIVER SPORT COLUMBIA R. BELOW SNAKE R. COLUMBIA R. ABOVE SNAKE R. WENATCHEE R. SNAKE R.	9 20 0	9 9 9	0 0 0	3 3 9 8	7	רטפטפטפט		משפחרשפט	3.023 3.311 3.033 3.333
PIVER COMMERCIAL OMMERCIAL NET	3	3	Ø	4	9	1.		5	3.027
DIAN FISHERY FALL INDIAN NET	ø	ð	Ø	8	3	ð		11	3.058
HATCHERIES PRIEST RAPIDS H.	ð	ð	1	2	Э	ã		3	9.316
STREAM SURVEY	ϑ	Ø	Ø	Ø	3	ð		n e	3.000
TOTALS PERCENT OF FECOVERY %	Ø Ø.Ø	1 2.6	3 7.7	25 64.1	3 23.1	1 .2.6		3	3.207

Master File Date : 30 August 1989 SELEASE GROUPS INCLUDED: 8205C

1982 MCNARY TRANS CONTROL

BELOW MCNARY

FALL CHINOOK

Brands Used: LAIC2 LAIC4 LAIM2 LAIM4 Wire Codes Used: 231613 231613 231613 231613

RECOVERY AREA RIVER SYSTEM TRAPS BONNEVILLE TRAP MCNARY TRAP	1982	YEAR OF 1983	RETURN						
RIVER SYSTEM TRAPS BONNEVILLE TRAP MCNARY TRAP			1384	1985	1986	1987		TOTAL	% RETURN
MCNARY TRAP LOWER GRANITE TRAP PRIEST PAPIDS TRAP	9	9 3 3	0 0 0	1 3 9	9 9			100	0.009 0.000 0.000 0.000
OCEAN FISHERIES ALASKA BRITISH COLUMBIA WASHINGTON OREGON CALIFORNIA OTHER	0 0 0 0 0	0 9 9 0	0 0 0 0	5310000	2 1 0 0 0	מני		7 4 1 3 0	8.5359 8.5359 8.5359 8.5359
RIVER SPORT COLUMBIA R. BELOW SNAKE R. COLUMBIA R. ABOVE SNAKE R. WENATCHEE R. SNAKE R. OTHER RIVERS	Ø 0 0 0	9 0 0 0 9	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 1	90000	30 CU TU TU TU TU		3 9 9	8.229 8.229 8.229 9.229 8.239
RIVER COMMERCIAL COMMERCIAL NET	Ø	Ø	1	3	Э	3		4	9.036
INDIAN FISHERY FALL INDIAN NET	3	9	1	3	3	3		4	3.036
HATCHERIES	9	Ø	e	3 +	ð	\mathfrak{J}_{1}		ð	0.223
STREAM SURVEY OTHER STREAMS	Ø	3	1 -	3	Ø	ŋ		1	0.209
TOTALS	8	0	3	17	3	3 ,	•	23	3.236
PERCENT OF RECOVERY %	3.0	0.0	13.0	73.9	13.0	8.8			

Master File Date : 30 August 1989 SELEASE GROUPS INCLUDED: 8206A

1982 MCNARY JOHN DAY POOL EVAL BELOW MCNARY

FALL CHINOOK

								NUMBER BELEASED:	23004
RECOVERY AREA		1982	YEAR OF 1983	RETURN 1984	1985	1986	1387	TOTAL	a retern
RIVER SYSTEM TRAPS BONNEVILLE TRAP MCNARY TRAP LOWER GRANITS TRAP PRIEST RAPIDS TRAP		Ø Ø		Ø 0 0	999	1 0 0	9 7		6.004 9.000 9.230 8.230
OCBAN FISHERIES ALASKA BRITISH COLUMBIA WASHINGTON OREGON CALIFORNIA OTHER		0 0 0 0 0	Ø 9 1 0 0 0 0	9 9 9 9 1	12 0 1 0 0	2 7 8 8 8 8 8 8 8 8	のとのできるのでも	1102250	9.961 9.669 9.669 9.669 9.669
RIVER SPORT		Ø	2	3	Ø	Ø	\mathfrak{J}	0	ø.020
RIVER COMMERCIAL COMMERCIAL NET		Ø	0	3	1	9	Ø	1	0.094
INDIAN FISHERY FALL INDIAN NET SUMMER INDIAN NET		g Ø	\emptyset	9 0	3	2	8	5	0.000 0.004
HATCHERIES		Ø	3	Ø	Ø	3	3	ð	3.220
STREAM SURVEY OTHER STREAMS		Ø	3	ð	1	3	Ø	• :	ø.co4
TOTALS		Ø	1	1	19	5	3	26	Ø.113
PERCENT OF RECOVERY	×	0.0	3.8	3.8	73.1	19.2	0.0		

Master File Date : 30 August 1989 SSLBASE GROUPS INCLUDED: 8276A

1982 MCNARY

JOHN DAY POOL EVAL BELOW MCNARY

FALL CHINOOK

Frands Used: LA+Y1 LA+Y3 LA+U1 LA+Y2 LA+U3 LA+Y4 LA+U2 LA+U4 Wire Codes Used: 231615 231615 231615 231615 231615 231615

								NUMBER	R RELEASED:	23384
RECOVERY AREA		1982	YEAR OF 1983	RETURN 1984	1385	1986	1997		TOTAL	% RETURN
RIVER SYSTEM TRAPS BONNEVILLE TRAP MONARY TRAP LOWER STANITE TRAP ESIEST SAPIDS TRAP		30000		0	Sp. company				1100000	a a a a a a a a a a a a a a a a a a a
COZAN FISHERIES ALASKA BRITISH COLUMBIA WASHINGTON CREGON CALIFORNIA OTHER		655555	5 5 - 5 TO TO TO	9 9 9 1	1251-555	ביים ביים ביים ביים ביים ביים ביים ביים	10100000000000000000000000000000000000		-4450-0450-70-4	2
RIVER SPORT		3	3	ů	з .	õ	7		đ	3.332
RITER COMMERCIAL COMMERCIAL NET		Ø	ð	Ø	1	ូ	3		1	0.004
INDIAN FISHERY FALL INDIAN MET EUMMER INDIAN MET		3 3	7 1 1	Ø	3	3	2 13		K)+1	9.722 9.004
HATCHERIES		Ø	2	Ø	Ø	9	3		2	9.930
STREAM SURVEY OTHER STREAMS		Ø	0	0	1	3	3		:	3.224
TOTALS PERCENT OF RECOVERY	*	Ø Ø.0	1 3.8	1 3.8	19 73.1	5 19.2	ð 3.3		26	0.113

Master File Date : 30 August 1999 RELEASE GROUPS INCLUDED: 8310A

1983 MCNARY

JOHN DAY POOL EVAL BELOW MCNARY FALL CHINOOK

Brands Used: LA7T1 LA7T3 LD7T1 Wire Codes Jsed: 231623 231623 231623

				•			NUNBER	RELEASED:	15059
RECOVERY AREA	1983	YEAR OF 1384	RETURN 1985	1986	1987	1988		TOTAL	% SETURN
RIVER SYSTEM TRAPS BONNEVILLE TRAP MCNARY TRAP LOWER GRANITE TRAP PRIEST RAPIDS TRAP	9 9 9	© ® S	9 9 9	2000	9	9999		2 177, 777	8.913 8.928 8.998 8.997
OCEAN FISHERIES ALASKA BRITISH COLUMBIA WASHINGTON OREGON CALIFORNIA OTHER	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 8 8 8 2	35 55 55 55 55 55 55 55 55 55	1400	5 1 0 0	5955		Ross - Config.	0.359 0.093 0.007 0.007 0.000 0.013
RIVER SPORT COLDUBIA R. ESLOW SNAKE R. COLDUBIA R. ABOVE SNAKE R. WENATCHEE R. SNAKE R. OTHER RIVERS	9 9 9 9	33533	0 1 0 0	000000000000000000000000000000000000000	15 11 50 E	600000		escorses.	0.20 0 0.013 0.200 0.200 0.200
RIVER COMMERCIAL COMMERCIAL NET	Ø	Ø	2	3	5	3		· ?	9.046
INDIAN FISHERY FALL INDIAN NET	o	ð	4	16	3	Ø		29	Ø.153
HATCHERIES WELLS H. PRIEST RAPIDS H.	3 3	Ø 3	Ø 7	2 7	3	. 3 3		17	g.213 g.113
STREAM SURVEY OTHER STREAMS	ā	1	ð	Ø	3	g		1	0.007
TOTALS PERCENT OF RECOVERY 3	3 0.0	6 4.7	54 42.2	51 39.8	17 13.3	3 3.0		100 400	2.85 0

Master File Date : 30 August 1999 RELEASE GROUPS INCLUDED: 8304A

1983 MCNARY

TRANS CONTROL FALL CHINOOK

BELOW MCNARY

Brands Used: LA2L1 LA2L3 LD2L1 Wire Codes Used: 231627 231627

							NUMBER RELEASED	: 15219
RECOVERY AREA	1983	YEAR OF 1984	RETURN 1985	1986	1987	1988	TOTAL	KETTER &
RIVER SYSTEM TRAPS BONNEVILLE TRAP MCNARY TRAP LOWER GRANITE TRAP PRIEST RAPIDS TRAP	00000	9	9 9 9	250505	Ø 3.000 (a)	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	7 7 7 7 8 8	8 910 8 50 9 50 9 50 9 60 9 60 9 60 9 60 9 60 9 60
OCEAN FISHERIES ALASKA BRITISH COLUMPIA WASHINGTON OREGON CALIFORNIA OTHER	33 33 30 30	3 1 9 9	3 4 0 1 0 3	155	57-0000000	1.00 min 1.0	STATE STATES	000.77.77.77.77.77.77.77.77.77.77.77.77.
RIVER SPORT COLUMBIA R. BELCH SNAKE R. COLUMBIA R. ABOVE SNAKE R. WENATCHEE R. SNAKE R.	3 3 3	900	3 1 6	1 3 9 9	3 3	מאמיים		0 237 0 657 0 667 1 7 7 7 1 8 667 0 667 0 667 0 667
RIVER COMMERCIAL COMMERCIAL NET	Ø	e	3	ð	3	ø	6	3 .3 .4 5 . 1 1 1
INDIAN FISHERY INDIAN FISHERY FALL INDIAN NET	9	3	3	Ø 6	17	2	• • • • • • • • • • • • • • • • • • •	3.257 3.251 3.110
HATCHERIES PRIEST RAPIDS H.	3	1.	3	2	9	ä	§	3.043
STREAM SURVEY OTHER STREAMS	8	3	1	0	1,	0	2	3.313
TOTALS PERCENT OF RECOVERY *	0 0.0	5 6.0	17 20.5	33 39.8	26 31.3	2 2 . 4	33	J.853

1983 MCNARY TRANS CONTROL BELOW MCNARY

FALL CHINOOK

							MUMBER	RELEASED:	14833
RECOVERY ABEA	1983	YEAR OF 1984	RETURN 1985	1998	1987	1988		16705	* BETTEN
RIVER SYSTEM TRAPS BONNEVILLE TRAP MCNARY TRAP LOMER GRANITE TRAP PRIEST RAPIDS TRAP		Suncervano	avav avav		**************************************	45 45 45 45 45 45 45 45 45 45 45 45 45 4		4 (T) (T) 4	1
OCEAN FISHERIES ALASKA BRITISH COLUMBIA WASHINGTON OREGON CALIFORNIA OTHER	さいてい つび さいさいさい		300000000000000000000000000000000000000	7 - 10 mar	65 45 65 65 65 75 75	O Design of the second of the		ようのではそれではでき	1 (10) 1 12:1 1 12:1 1 12:1 1 12:1 1 13:1 1 13:1
RIVER SPORT COLUMBIA R. BELOW SHAKE R. COLUMBIA R. ABOVE SHAKE R. WENATCHEE R. SHAKE R. OTHER RIVERS	555	กับกับกับสมสมสมสม	3-355	さいてい つび ごびっひ	eses no est	- av av av av av av av		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 712 0.101 2 727 2 127 2 127 2 107 2 117 2 117 2 117 2 117 2 117
RIVER COMMERCIAL COMMERCIAL NET	\mathfrak{g}	ð	3	Ø	1	3		1	3.237
INDIAN FISHERY FALL INDIAN MET	9	3	ø	ô	2	3		8	3.354
HATCHERIES PRIEST RAPIDS H.	3	3	2	2	Э	ð		4	3.657
STREAM SURVEY OTHER STREAMS	Ø	ð.	Ø	0	1	\mathfrak{g}		1	3.237
TOTALS PERCENT OF RECOVERY	g % Ø.0	1 2.4	3 7.1	21 50.0	13 31.0	4 9.5		42	ð.258

Master File Pate ::33 August 1989 RELEASE GROUPS INCLUDED: 38340

1983 MCNARY TRANS CONTROL

BELOW MCNARY

FALL CHINOOK

mile codes vsed. 201000 2	.01600							YOMBE	R RELEASED:	13601
RECOVERY AREA		1953	YEAR OF 1984	RETURN 1985	1986	1987	1988		TOTAL	* RETURN
RIVER SYSTEM TRAPS BONNEVILLE TRAP MONARY TRAP LOWER GRANITE TRAP PRIEST SAPIES CRAP	und de la constant de		7070 7070 7070 7070	Carrier Course	1	3. 7 7 7 7			و مواد الماد ا	0.009 0.000 0.230 0.019
OCEAN FISHERIES ALASKA BRITISH COLUMBIA WASHINGTON OREGON CALIFORNIA OTHER		majmajmajmajmajmajmajmajmajmajmajmajmajm	מנית שת שת נית שת שת	コン・イ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	641-80808080808080808080808080808080808080	1.000.000.000.000.000.000.000.000.000.0	त्र का का का का का का •)	esca- magama	9:328 9:319 3:239 9:339 9:333 9:333
RIVER SPORT		1	3	3	Ø	3	3		1 U	0.000
RIVER COMMERCIAL COMMERCIAL NET		7	J	1	3	1	9		·	Ø.Ø19
INDIAN FISEERY FALL INDIAN NET	. '	3	g .	3	6	2	3		9	9.075
HATCHERIES WELLS H PRIEST RAFIDS H.		L 	3 2 2	8 1	J 0	1 3	9			2.009 2.209
STREAM SURVEY		3	3	ð	3	ð	8		\vec{v}	2.200
TOTALS PERCENT OF RECOVERY	÷ 9	2.3	8 0.0	4 19.0	10 47.6	7 33.3	3 V.9		21	Ø.198

Master File Date : 30 August 1989 58LEASE GROUPS INCLUDED: 8310B

1983 MCNARY

JOHN DAY POOL EVAL BELOW MCNARY

FALL CHINOOK

Brands Used: LATS1 LATS3 LDTS1 LDTS3 Wire Codes Used: 231624 231624 231624 231624

							HUMBER	RELEASED:	17295
RECOVERY AREA	1983	YEAR OF 1984	RETURN 1985	1986	1997	1988		TOTAL	% RETURN
BIVER SYSTEM TRAPS BONNEVILLE TRAP MCNARY TRAP LOWER GRANITE TRAP PRIEST RAPIDS TRAP	Ø 0 0	9 9 9 3	Ø Ø Ø	Ø . Ø Ø		3000		9 9 9	0.000 0.000 0.000 0.000
OCEAN FISHERIES ALASKA BRITISH COLUMBIA WASHINGTON OREGON CALIFORNIA OTHER	สมสมสมสมสมสม	900000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 8 8 8	5) + - 17 - 17 - 17 - 17 - 17 - 17 - 17 -	たいさい さいさい さいさい		11-33000	3.096 3.096 3.099 9.009 3.009 3.000
RIVER SPORT COLUMBIA R. BELOW SNAKE R. COLUMBIA R. ABOVE SNAKE R. WENATCHEE R. SNAKE R.	9 9 9	9 8 9 9	0 0 0	8	++curses	999		1 3	3.636 9.636 9.639 9.639
RIVER COMMERCIAL COMMERCIAL NET	Ø	Ø	9	Ø	1	g		1	3.006
INDIAN FISHERY FALL INDIAN NET	Ø	ð	Ø	2	g.	3		2 .	8.812
HATCHBRIES WELLS H. PRIEST RAPIDS H.	α υ υ	9	. g	1	g g	<u>ي</u> و م		***	J. 226 3. 206
STREAM SURVEY	ę.	9	9	ð	₽	3		Ø	0.000
TOTALS	3	g ·	3	5	3	Ø		8	3.946
PERCENT OF RECOVERY 3	Ø.Ø	0.0	Ø.Ø	62.5	37.5	0.0			

APPENDIX C.--CWT data for subyearling chinook salmon released into the tailrace of McNary Dam, during the summers 1981-1983, as reported by the Pacific Marine Fisheries Commission. Report was generated on 28 August 1989. Estimated numbers were used in analyses presented in this research report.

TAGCODE: 031731

INOCODE: 031	1/01				
RELEASING AGENCY: NMFS				DY TYPE:	Ε
80 CHINOOK TAGGED: 17723 RELEASED:		31	, % T	AG LOSS:	
#/LB: 15.5 UNTAGGED: STOCK:				DAYS:	
SITE: COL. R, BELOW MCNARY HATCHERY:	S	ARY (M)			
YEAR FISHERY	T	OBS'D	EST'D	MEAS'D	AVG MM
1982 WASHINGTON HATCHERY	С	1	1	1	470
SE ALASKA COMMERCIAL (UNKN/MULT GEAR)	C	1		1	480
S.E. ALASKA COMMERCIAL SEINE	C	1	1	1	410
1982 TOTALS:		3	. 2	3	453
• ,					
1983 BC: SW VANC. ISLAND TROLL (21,23,24)	С	1	7	1	700
BC: NORTHERN TROLL (STAT. AREAS 1-5)	С	3	14	3	551
COLUMBIA RIVER NET	С	1	3	1	568
1983 TOTALS:		5	. 24	5	584
1984 COLUMBIA RIVER NET	С	6	16	6	853
OPEGON EIGH TRAP	_	. Λ	Д	А	880

28 AUG 1989	SUMMARY OF R	ECOVERIES OF	TAGCODES	;	P	AGE 11
,	TA	GCODE: 031731		ITINUED)		
YEAR FISHER	RY	T		EST'D	MEAS'D	AVG MM
WASHIN WASHIN SE ALA S.E. A BC: NO BC: NO BC: NO	NGTON HATCHERY NGTON RIVER SPORT NGTON SPAWNING GROUNDS NSKA COMMERCIAL (UNKN/MUL NICASKA COMMERCIAL TROLL NIVANC. ISLAND TROLL (25- NIVANC. ISLAND TROLL (21.) ORTHERN TROLL (STAT. AREA ORTHERN NET (STAT. AREAS ORTH CENTRAL TROLL (6-9,	T GEAR) C 1 27) C 23,24) C S 1-5) C	1 2 1 13	3 29 3 15 9 6	1 2 10	925 793 810 836 856 945
1984 TOTALS	S:		42	96		845
OREGON WASHIN WASHIN S.E. A	BIA RIVER NET N FISH TRAP NGTON OCEAN SPORT (KICKER NGTON HATCHERY NLASKA COMMERCIAL TROLL N VANC. ISLAND TROLL (25-	BOAT) C	: 1 : 3	3	1 3 2	916 1090 1050 895
1985 TOTALS	3 :		14	29	13	965
	BIA RIVER NET BLASKA COMMERCIAL TROLL		1	2	1	941
1986 TOTALS	S:		2	2	1	941
TOTALS FOR	TAGCODE 031731:		66	153	6 0	831
80 CHINOOK #/LB: 15.5	TAI AGENCY: NMFS : TAGGED: 42580 UNTAGGED: R, BELOW MCNARY	STOCK:	/81 NARY (M)	% Т	DDY TYPE: AG LOSS: DAYS:	E
YEAR FISHER	ίΥ	T	OBS'D	EST'D	MEAS'D	AVG MM
WASHIN	IGTON HATCHERY IGTON SPAWNING GROUNDS INTRAL NET (STAT. AREAS 6	-11) C	1		1 1 1	48Ø 510 350
1982 TOTALS	6:		3	68	2	447
BC: NO COLUME WASHIN SE ALA S.E. A	I VANC. ISLAND TROLL (21.) IRTHERN TROLL (STAT. AREAS ITA RIVER NET IGTON SPAWNING GROUNDS ISKA COMMERCIAL (UNKN/MULT ILASKA COMMERCIAL TROLL ILASKA COMMERCIAL SEINE IRTH CENTRAL (ROLL (6-7.)	5 1-5) C C C T GEAR) C C	2 6 2 1 1 1	11 13 28	1 2 6 2	593 631 727 726 620 603
	·			-	•	turno al

28 AUG 1989 SUMMARY OF RECOVERIES OF TAGCODES PAGE 12 TAGCODE: 031732 (CONTINUED) YEAR FISHERY..... Т OBS'D EST'D MEAS'D AVG MM 1983 TOTALS: 13 15 61 683 1984 OREGON OCEAN TROLL C 1 1 910 53 . COLUMBIA RIVER NET 21 21 ODFW HATCHERIES 892 C 1 1 1 OREGON FISH TRAP C 18 18 18 879 WASHINGTON OCEAN TROLL 1 810 1 1 WASHINGTON HATCHERY С 6 807 WASHINGTON SPAWNING GROUNDS 935 SE ALASKA COMMERCIAL (UNKN/MULT GEAR) С S.E. ALASKA COMMERCIAL TROLL 65 15 784 BC: NW VANC. ISLAND TROLL (25-27)
BC: SW VANC. ISLAND TROLL (21,23,24) 8 C .3 .3 790 С 1 4 1 718 BC: NORTHERN TROLL (STAT. AREAS 1-5) С 5 757 1 1 1984 TOTALS: 75 164 70 839 1985 COLUMBIA RIVER NET С 13 46 13 948 OREGON FISH TRAP C 974 6 6 6 WASHINGTON HATCHERY С 1 1 1 900 WASHINGTON SPAWNING GROUNDS 950 С 1 1 S.E. ALASKA COMMERCIAL TROLL 30 914 1 .3 S.E. ALASKA COMMERCIAL SEINE С 3 830 BC: NW VANC. ISLAND TROLL (25-27) С 956 1 BC: SW VANC. ISLAND TROLL (21,23,24) 4 С 913 1 BC: NORTHERN TROLL (STAT. AREAS 1-5) 9 828 BC: NORTHERN NET (STAT. AREAS 1-5) 5 С 1 738 1 5 BC: NORTH CENTRAL TROLL (6-9, 30) С 1 898 1985 TOTALS: 32 132 31 927 1986 COLUMBIA RIVER NET 2 2 968 C S.E. ALASKA COMMERCIAL TROLL 1 1986 TOTALS: 3 7 2 968 TOTALS FOR TAGCODE 031732: 433 128 119 837 TAGCODE: 031730 RELEASING AGENCY: NMFS STUDY TYPE: E 80 CHINOOK TAGGED: 16779 RELEASED: 08/81 % TAG LOSS: #/LB: 15.5 UNTAGGED: STOCK...: DAYS: SITE: COL. R. BELOW MCNARY HATCHERY: MCNARY (M) S YEAR FISHERY..... T 08**5**′0 EST'D MEAS'D AVG MM 1982 BC: CENTRAL NET (STAT. AREAS 6-11) С 3 1 355 1982 TOTALS: 1 : 355

С

-:

ខ

768

1984 COLUMBIA RIVER NET

28 AUG 1989 SUMMARY OF RECOVER	IES OF T	AGCODES		P	AGE 13
TAGCODE:	Ø3173Ø S	(CONT I	NUED)		
YEAR FISHERY		OBS'D	EST'D	MEAS'D	MM BVA
WASHINGTON HATCHERY S.E. ALASKA COMMERCIAL TROLL BC: NORTHERN TROLL (STAT. AREAS 1-5)	C I C	1 2 2	1 6 11	1 2 2	960 799 810
1984 TOTALS:		. 8	25	8	810
1985 COLUMBIA RIVER NET OREGON FISH TRAP S.E. ALASKA COMMERCIAL TROLL BC: NORTHERN TROLL (STAT. AREAS 1-5)	C	1 1 2 1	4 1 3 3	1 1 2 1	921 1050 853 920
1985 TOTALS:		5	11	5	919
TOTALS FOR TAGCODE 031730:		14	3 9	14	817
TAGCODE: RELEASING AGENCY: NMFS 81 FALL CHINOOK TAGGED: 8667 RELEA: #/LB: UNTAGGED: Ø STOCK SITE: COL. R, BELOW MCNARY HATCH	SED: 06/	COLUMBIA	% T	DY TYPE: AG LOSS: DAYS:	E
YEAR FISHERY		OBS'D	EST'D	MEAS'D	AVG MM
1983 BC: CENTRAL NET (STAT. AREAS 6-11)	С	1	2	1	376
1983 TOTALS:		1	. 2	1	376
1984 COLUMBIA RIVER NET WASHINGTON HATCHERY BC: NW VANC. ISLAND TROLL (25-27) BC: SW VANC. ISLAND TROLL (21,23,24)	0000	1 1 1	2 1 4 8	1 1 1	629 790 712 612
1984 TOTALS:		4	15	4	68 6
1985 COLUMBIA RIVER NET OREGON FISH TRAP WASHINGTON HATCHERY WASHINGTON RIVER SPORT WASHINGTON SPAWNING GROUNDS S.E. ALASKA COMMERCIAL TROLL EC: NORTHERN TROLL (STAT. AREAS 1-5) EC: JOHNSTONE STRAIT NET (12, 13)		3 1 1 1 1 6 1	10 1 1 5 22 7 5	3 1 1 1 1 4 1	812 873 800 760 910 738 930 871
1985 TOTALS:		15	54	13	ยเห
1986 OREGON OCEAN TROLL COLUMBIA RIVER NET WASHINGTON SPAWNING GROUNDS S.E. ALASKA COMMERCIAL TROLL BC: NORTHERN NET (STAT. AREAS 1-5)	C C C	1 4 2 1 1	4 17 57 4 3	1 4 2 1	947 945 940 941

28 AUG	1989 SUMMARY OF I	RECOVERIES	OF T	AGCODES		۴	AGE 14
	т.	AGCODE: 231		(CONT II	NUED)	•	
YEAR F	ISHERY		. T	OBS'D	EST'D	MEAS'D	AVG MM
1986 T	OTALS:			9	8 5	8	956
TOTALS	FOR TAGCODE 231609:			29	156	26	819
	_						
81 FALI	ING AGENCY: NMFS L CHINOOK TAGGED: 18864 UNTAGGED: Ø COL. R, BELOW MCNARY	RELEASED: STOCK: HATCHERY:	07/8 MID	32 COLUMBIA ARY (M)		DY TYPE: AG LOSS: DAYS:	E
YEAR F	ISHERY	• • • • • • • • • • • • • • • • • • • •		OBS'D	EST'D	MEAS'D	AVG MM
1982 N	MFS JUVENILE SAMPLING, COL. I	RIVER	С	. 1	2	1	157
1982 T	OTALS:			1	. 2	1	157
1983 S	.E. ALASKA COMMERCIAL SEINE		С	i		1	280
1983 T	OTALS:			1		1	380
8	ASHINGTON HATCHERY C: NORTHERN TROLL (STAT. ARE C: NORTHERN NET (STAT. AREAS		0		1 7 3		
1984 T	OTALS:			3	11	3	645
00 30 80	ALIFORNIA OCEAN TROLL COLUMBIA RIVER NET GEGON FISH TRAP HASHINGTON HATCHERY G.E. ALASKA COMMERCIAL TROLL HC: NORTHERN TROLL (STAT. ARE		000100	. 12 1 2	7 40 1 2 11 14 5	1 2 6	890 802 858 825 764 886 750
1985 T	OTALS:			27	80	25	805
០ ស ទ	COLUMBIA RIVER NET DREGON FISH TRAP DASHINGTON RIVER SPORT D.E. ALASKA COMMERCIAL SEINE C: NW VANC. ISLAND TROLL (25 C: NORTHERN TROLL (STAT. ARE	-27)	000100	3 1 2 1 1	14 1 10 4	3 1 2 1 1	966 912 950 980 963
1986 T	OTALS:			9	32	8	957
1987 C	COLUMBIA RIVER NET		С	1	4	1	1030
1987 T	OTALS:			1	4	1	1030

TOTALS FOR TAGCODE 231611:

28 AUG 1989

SUMMARY OF RECOVERIES OF TAGCODES

PAGE 15

1

1

16

5 22 34

1

5

1

1 12

С

C

500

500

799

830

ยทท

778

1

1

10

TAGCOD RELEASING AGENCY: NMFS	E: 23161		STUD	V TVDE-	
81 FALL CHINOOK TAGGED: 11152 REL #/LB: UNTAGGED: 0 STO SITE: COL. R, BELOW MCNARY HAT	EASED: 0	07/82-08/82 1ID COLUMBIA 1CNARY (M)	% TA	G LOSS: DAYS:	
YEAR FISHERY		S			AVG MM
1984 COLUMBIA RIVER NET WASHINGTON SPAWNING GROUNDS		C 2 1	11	2 1	581 750
1984 TOTALS:		3	12	3	637
1985 COLUMBIA RIVER SPORT COLUMBIA RIVER NET		C 1 C 6 C 1	35 20		830 802
OREGON FISH TRAP WASHINGTON OCEAN SPORT (KICKER BOA S.E. ALASKA COMMERCIAL TROLL	IT)	C 1 5	20 1 3 10	1 1 4	889 800 768
S.E. ALASKA COMMERCIAL SEINE BC: NORTHERN TROLL (STAT. AREAS 1- BC: NORTH CENTRAL TROLL (6-9, 30)	-5)	L	9	1 2	800
1985 TOTALS:	٠.	18	85	16	800
1986 COLUMBIA RIVER NET S.E. ALASKA COMMERCIAL TROLL BC: NORTHERN TROLL (STAT. AREAS 1-	100	C 3 1 2 C 1	11 1 3	3 1 1	
1986 TOTALS:		6	15	- 5	873
TOTALS FOR TAGCODE 231613:		27	112	24	795
TAGCOD	E: 23161	15			
RELEASING AGENCY: NMFS 81 FALL CHINOOK TAGGED: 23243 REL #/LB: UNTAGGED: Ø STO SITE: COL. R, BELOW MCNARY HAT	OCK: M CHERY: M	1ID COLUMBIA 1CNARY (M)	% TA	Y TYPE: G LOSS: DAYS:	E .
YEAR FISHERY		T OBS,D	EST'D	MEAS'D	AVG MM
1983 WASHINGTON OCEAN SPORT (KICKER BOA	iT)	C 1	3	1	360°
1983 TOTALS:		1	3	1	350

1984 NMFS-ALASKA JUVENILE SAMPLING: RESEARCH T C

1984 TOTALS:

1985 COLUMBIA RIVER NET

FUGET SOUND SFORT

WASHINGTON SPAWNING GROUNDS S.E. ALASKA COMMERCIAL TROLL

т

'n.

.50-

BULF

Τ.

ur.

T: L:

AL.

28 AUG 1989	SUMMARY OF	RECOVERIES	OF TA	AGCODES		, F	AGE 16
	τ.	AGCODE: 231	615 S	(CONTI	NUED)		
YEAR FISHERY	•••••	• • • • • • • • • • • • • • • • • • • •		OBS'D	EST'D	MEAS'D	AVG MM
1985 TOTALS:				19	77	17	765
1986 COLUMBIA RI OREGON FISH S.E. ALASKA			C	1	7 1 6	2 1 2	1011
1986 TOTALS:				5	14	5	928
TOTALS FOR TAGCO	DE 231615:			26	95	,24	771
	т .	AGCODE: 231	623				
RELEASING AGENCY 82 FALL CHINOOK #/LB: SITE: COL. R, BE	: NMFS TAGGED: 15057 UNTAGGED: 0		Ø6/8 MID	COLUMBIA	% Т	DY TYPE: AG LOSS: DAYS:	Ε
YEAR FISHERY	••••••			OBS'D	EST'D	MEAS'D	AVG MM
	HATCHERY SPAWNING GROUNDS OBSERVER, GULF OF	ALASKA	000	1	13 1 5		
1984 TOTALS:		₽		6	18	6	455
S.E. ALASKA BC: NW VANC BC: NORTHER	NET	AS 1-5)	0001000	2	22 6 7 5 3 7 5 5	6 1 7 1 2 2 1 2	540 684 680 650 690
1985 TOTALS:				22	59	22	668
WASHINGTON WASHINGTON S.E. ALASKA EC: NW VANO EC: SW VANO EC: NORTHER EC: NORTHER	VER NET I TRAP OCEAN SPORT (KICKE	-27) ,23,24) AS 1-5) ;1-5)	00000100000	1 20 2 1 9 1 15 1 1 3	4 58 23 10 29 23 5 10 3 6	1 20 2 1 9 1 1 9 1 1 3 1 2	
1986 TOTALS:				57	145	51	841

1987 BC: NORTHERN TROLL (STAT. AREAS 1-5)

28 AUG 1989 SUMMARY OF RECOV	VERIES OF	TAGCODES		P	AGE 17
TAGCOI	DE: 23162	3 (CONT	INUED)		
YEAR FISHERY		T OBS'D	EST'D	MEAS'D	AVG MM
COLUMBIA RIVER SPORT			11	_	
COLUMBIA RIVER NET SE ALASKA COMMERCIAL (UNKN/MULT GE S.E. ALASKA COMMERCIAL TROLL	EAR) (C 8 C 1 I 4		. 3	
1987 TOTALS:		-		12	
TOTALS FOR TAGCODE 231623:			•	91	
				·	
TAGCOI	DE: 23162	7			_
RELEASING AGENCY: NMFS 82 FALL CHINOOK TAGGED: 15010 REL #/LB: UNTAGGED: 0 STO SITE: COL. R, BELOW MCNARY HA	LEASED: Ø DCK: M TCHERY: MO	ID COLUMBI CNARY (M)	% T	DAYS:	Ε .
YEAR FISHERY			EST'D	MEAS'D	AVG MM
1984 WASHINGTON HATCHERY	(1	4	1	390
MACHINICTON COMMITTING COMMINE		C 2	2	2	45 5
NMFS-ALASKA JUVENILE SAMPLING: RES BC: NORTHERN NET (STAT. AREAS 1-5)	SEARCH T (D 1 1	- 1 - 3	1 1	421 420
1984 TOTALS:			10	5	428
1985 OREGON OCEAN TROLL	(1	3	1	640
COLUMBIA RIVER NET	(7			653
WASHINGTON HATCHERY		3	3	3	633
WASHINGTON RIVER SPORT WASHINGTON SPAWNING GROUNDS			23	1	
S.E. ALASKA COMMERCIAL TROLL		I I		1	سده
S.E. ALASKA COMMERCIAL SEINE	(2	3	2	483
BC: SW VANC. ISLAND TROLL (21,23,2	24) (2	7	2.	629
BC: NORTHERN TROLL (STAT. AREAS 1-	-5) (2	13	2	662
1985 TOTALS:		20	81	19	628
1986 OREGON OCEAN TROLL		1		1	870
COLUMBIA RIVER NET		10		- 13	
OREGON FISH TRAP OREGON ESTUARY SPORT			2	2	835
WASHINGTON OCEAN SPORT (KICKER BO)			4 4	1 1	830 820
WASHINGTON HATCHERY		2	2	2	760
WASHINGTON SFAWNING GROUNDS	Ċ	4	114	4	838
S.E. ALASKA COMMERCIAL TROLL		1 14	43	12	760
S.E. ALASKA TEST FISHERY TROLL		<u> </u>	,	1	656
BC: NW VANC. ISLAND TROLL (25-27) BC: SW VANC. ISLAND TROLL (21,23,2			ა 5	1	755
BC: NORTHERN TROLL (STAT. AREAS 1-		3 3	10	1	აგგ 8 90

1986 TOTALS:

28 AUG 1989 SUMMARY OF RECOVERIE	S OF T	AGCODES		F	AGE 18
TAGCODE: 2	231627 S	(CONTI	NUED)		
YEAR FISHERY		OBS'D	EST'D	MEAS'D	AVG MM
1987 BC: NORTHERN TROLL (STAT. AREAS 1-5)			26	5	930
COLUMBIA RIVER NET FUGET SOUND NET	C		43 7	10	
S.E. ALASKA COMMERCIAL TROLL	I	5	. 8	4	908
1987 TOTALS:		23	83	20	1 902
1988 COLUMBIA RIVER NET	I	2	4	2	948
1988 TOTALS:		2	. 6	2	948
TOTALS FOR TAGCODE 231627:		91	413	83	771
TAGCODE: 2 RELEASING AGENCY: NMFS	231630		STII	DY TYPE:	F
82 FALL CHINOOK TAGGED: 14690 RELEASE	ED: 07/ : MID RY: MCN	83 COLUMBIA ARY (M)	% T	AG LOSS: DAYS:	-
YEAR FISHERY	S T	OBS'D	EST'D	MEAS'D	AVG MM
1984 BC: NORTHERN NET (STAT. AREAS 1-5)	С	1	6	1	367
1984 TOTALS:	٠	1	6	1	367
1985 COLUMBIA RIVER NET		. 1			
WASHINGTON HATCHERY WASHINGTON RIVER SPORT	C	2 1	2 5	2 1	650 530
1985 TOTALS:		۵	1 Ø	4	640
1986 COLUMBIA RIVER NET	С	6	18	. 6	841
WASHINGTON HATCHERY	C				900
S.E. ALASKA COMMERCIAL TROLL	I I		6 4		
S.E. ALASKA COMMERCIAL SEINE BC: SW VANC. ISLAND TROLL (21,23,24)			. 5	1 1	
BC: NORTHERN TROLL (STAT. AREAS 1-5)	C		11	3	
BC: NORTHERN NET (STAT. AREAS 1-5)	С	1	3	· 1	
BC: SOUTH CENTRAL TROLL (10-12)	. С	1 .	3	1	990
1986 TOTALS:		21	51	20	843
1987 COLUMBIA RIVER SFORT	Ç	1	10	· 1	940
COLUMBIA RIVER NET	C	3	11	3	953
OREGON FISH TRAP S.E. ALASKA COMMERCIAL TROLL	I	1 6	1 11	1 3	9,55 944
1987 TOTALS:		11	33	8	646
1988 COLUMBIA RIVER NET	I	1	3	1	1000
S.E. ALASEA CUMMERCIAL TROLL	1	<u>.</u>	8	1	950

28 AUG 1989 SUMMARY OF RECOVERIES	OF T	AGCODES		P	AGE 19					
TAGCODE: 231630 (CONTINUED)										
YEAR FISHERY		082,D	EST'D	MEAS'D	AVG MM					
BC: NORTHERN TROLL (STAT. AREAS 1-5)	I	1	5	1	1041					
1988 TOTALS:		4	17	3	9 97					
TOTALS FOR TAGCODE 231630:		41	117	36	844					
	٠			,						
RELEASING AGENCY: NMFS 82 FALL CHINOOK TAGGED: 10601 RELEASED: */LB: UNTAGGED: 0 STOCK: SITE: COL. R, BELOW MCNARY HATCHERY:	08/ MID	83 83	% Т	DY TYPE: AG LOSS: DAYS:	E					
YEAR FISHERY	. т	OBS'D	EST'D	MEAS'D	AVG MM					
1985 COLUMBIA RIVER NET WASHINGTON OCEAN SPORT (CHARTER BOAT) WASHINGTON HATCHERY BC: NORTHERN NET (STAT. AREAS 1-5)	0000		3 2 1 5	1						
1985 TOTALS:		4	12	3	597					
1986 COLUMBIA RIVER NET OREGON FISH TRAP S.E. ALASKA COMMERCIAL TROLL BC: NORTHERN TROLL (STAT. AREAS 1-5)	CIC	1 2	25 1 2 4	1						
1986 TOTALS:		11	32	10	802					
1987 COLUMBIA RIVER NET S.E. ALASKA COMMERCIAL TROLL	C	3	13 3	3	933 810					
1987 TOTALS:		4	16	4	903					
TOTALS FOR TAGCODE 231633:		19	60	17	789					
RELEASING AGENCY: NMFS 82 FALL CHINOOK TAGGED: 17292 RELEASED: #/LB: UNTAGGED: Ø STOCK: SITE: COL. R, BELOW MCNARY HATCHERY:	Ø9/	83 COLUMBIA		DY TYFE: AG LOSS: DAYS:						
YEAR FISHERY		OBS'D	EST'D	MEAS'D	AVG MM					
1986 COLUMBIA RIVER NET WASHINGTON HATCHERY S.E. ALASKA COMMERCIAL TROLL	C C I	2	2		807 645 750					
1986 (OTALS:			24		?50					

28 AUG 1989	UG 1989 SUMMARY OF RECOVERIES OF TAGCODES						
	TAGCODE:	231624 S	(CONT)	(NUED)		,	
YEAR FISHERY			OBS'D	EST'D	MEAS'D	AVG MM	
1987 BC: NORTHERN TROLL	(STAT. AREAS 1-5)	С	1	3	1	9 59	
COLUMBIA RIVER NET OREGON ESTUARY SPO		C	1 1	16 3	1 1	904 900	
1987 TOTALS:			. 3	21	3	921	
1988 S.E. ALASKA COMMER	RCIAL TROLL	I	1		1	935	
1988 TOTALS:			1		1	935	
TOTALS FOR TAGCODE 2318	524:		12	45	12	815	
TACCORES SEROSTER. 22	- DACEC - OR						