Fish Guiding Efficiency of Submersible Traveling Screens at Lower Monumental Dam-1986

by Richard D. Ledgerwood, George A. Swan and Richard F. Krcma

May 1987

.

FISH GUIDING EFFICIENCY OF

SUBMERSIBLE TRAVELING SCREENS AT

LOWER MONUMENTAL DAM, 1986

by Richard D. Ledgerwood George A. Swan and Richard F. Krcma

Annual Report of Research Financed by U.S. Army Corps of Engineers Contract DACW68-84-H-0034

and

Coastal Zone and Estuarine Studies Division Northwest and Alaska Fisheries Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 2725 Montlake Boulevard East Seattle, Washington 98112

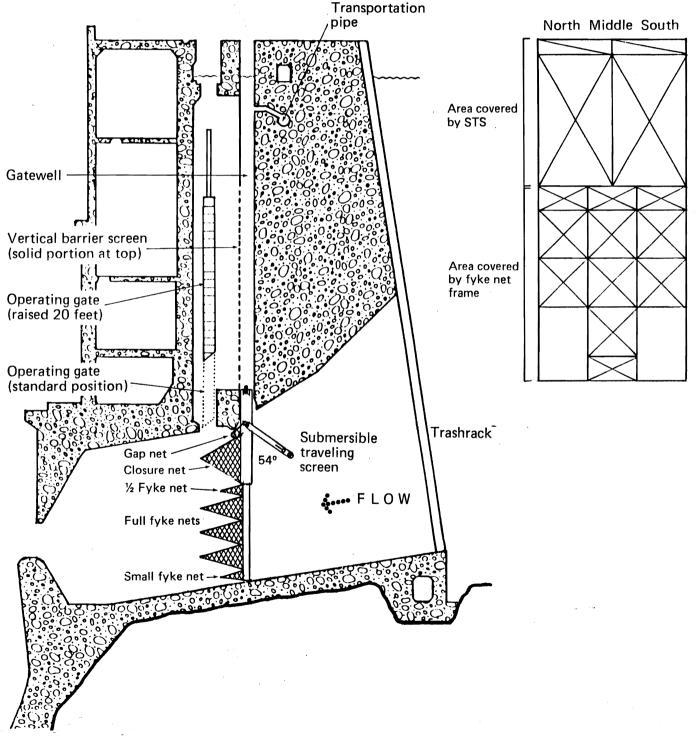
May 1987

CONTENTS

Pa	age
INTRODUCTION	1
METHODS AND MATERIALS	3
VD Tests	7
FGE Tests	9
Data Analyses 1	10
Sample Size Requirements l	10
Number of Required Replicates 1	11
Statistical Comparisons 1	11
RESULTS 1	11
VD Tests 1	11
FGE Tests 1	14
DISCUSSION 1	14
ACKNOWLEDGMENTS 1	17
LITERATURE CITED 1	18
APPENDIX ACatch and catch distribution data and mean fork lengths of juvenile salmonids.	

APPENDIX B--Analysis of variance based upon the Latin square cross-over design (Cochran and Cox 1957).

.


.

INTRODUCTION

Lower Monumental Dam is a hydroelectric project operated since 1969 on the Snake River by the U.S. Army Corps of Engineers (COE) at River Kilometer (RKm) 67. Raymond (1979) reported that up to 33% of the juvenile salmonids passing through turbines at dams are lost due to direct mortality from turbines and related predation by fish and birds. For the past several years, the majority of juvenile salmon, Oncorhynchus sp., and steelhead, Salmo gairdneri, have been collected from the Snake River at Little Goose Dam (RKm 113) and Lower Granite Dam (RKm 173) and transported around Lower Monumental and other dams to downstream release sites (Park et al. 1984). In recent years, however, large numbers of juvenile chinook salmon, 0. tshawytscha, and steelhead have been released from a new hatchery complex (Lyons Ferry) located downstream (RKm 95) from the collector dams and upstream from Lower Monumental Dam. These additional fish plus requirements of the Columbia River Fish and Wildlife Program (Section 404, B8 amended) have required improved fish protection at Lower Monumental Dam.

During 1986, personnel of the National Marine Fisheries Service (NMFS), under contract to the COE, undertook the initial steps for improved fish protection at Lower Monumental Dam--to evaluate a method of screening juvenile salmonids from the power-generating turbines. The most effective method of achieving this at other dams has been to employ submersible traveling screens (STS) to guide fish out of the turbine intakes into the gateslots where they can be bypassed around the turbines (Swan et al. 1983) (Fig. 1).

Research over the years by NMFS has shown that fish guiding efficiency (FGE) of STSs can vary considerably between dams and during different periods in the smolt migration. Because of this variability, the fishery agencies and the COE have agreed that FGEs be carefully measured at each dam to assure adequacy before installation of a full complement of STSs.

Lower Monumental Dam cross section

Figure 1.--Cross section of a typical turbine intake at Lower Monumental Dam showing STS in the 30-inch lowered position with varying positions of operating gate for FGE testing (A); a facing view of the net layout used during 1986 (B) is also shown.

Fyke net layout

The objectives of the studies conducted at Lower Monumental Dam during 1986 were to determine the FGE and vertical distribution (VD) of juvenile salmonids in a typical turbine intake. Juvenile chinook salmon were the target species for the tests because FGEs measured for these fish at other dams have been marginal at best and generally much lower than measured for steelhead. The testing program covered two general periods of the chinook salmon smolt migration. The first period involved primarily yearling chinook salmon that migrate during April and May, and the second period targeted subyearling chinook salmon released from Lyons Ferry Hatchery in early June.

Hydraulic model studies (WES) have shown that increased flow into the gatewells, which can increase FGE, can be obtained by partially raising the operating gate (Swan et al. 1985). Therefore, initial tests compared the benefits to FGE of a 20-foot raised operating gate versus the standard gate setting flush with the intake ceiling. Subsequent tests were conducted using the best operating gate setting determined during the earlier tests.

METHODS AND MATERIALS

The STSs and vertical barrier screens used for the study were borrowed from John Day Dam. Fyke net frames, a dipbasket (Swan -et al. 1979), and other equipment were fabricated or modified from existing equipment by NMFS personnel and delivered to the dam site. Mobile crane service, provided by the COE, was used to transport and assemble equipment on the deck of the dam.

All tests were conducted in Turbine Unit 4 located centrally in the powerhouse. Generally, tests began at dusk (1800 h) and required about 5 h of turbine operation to collect sufficient numbers of fish for validation. A few tests took considerably longer than 5 h to complete (Appendix Tables Al and A2).

Tests began on 15 April and continued periodically through 15 June (Table 1). Tests originally planned for mid to late May were canceled due to low numbers of yearling chinook salmon collected under the smolt monitoring program (R. Strain $\frac{1}{}$).

The following sequence of events was typical for conducting a test:

- Unit 4 was shut down, and the orifices opening into the fish bypass pipe were closed.
- 2) The gatewells were dipnetted to remove all fish (Swan et al. 1979).
- 3) Fyke net frames and STSs, as required, were lowered by gantry crane into the intake and the screen extended to a 54° angle.
- 4) Unit 4 was started, and the start time was recorded when the turbine reached full load (135 MW).
- 5) The STS motors were started to rotate the traveling screen (Farr 1974).
- 6) Numbers of fish entering the unit were monitored by periodic dipnetting of the gatewells.
- 7) The test was terminated (unit shut down) when adequate numbers of fish for statistical needs were estimated to have entered the unit (see Sample Size Requirements Section). When VD and FGE tests were conducted simultaneously, the termination number was determined from dipnetting the gatewell containing the STS.

^{1/} R. Strain, Washington Department of Game, Smolt Monitoring Program, Rt, Box 686, Warrenton, Oregon 97146 pers. commun. 1986.

		Gatewell slot Unit 4	
Dates	A	В	C
15-17 April	_ <u>a/</u>	VD	-
21-26 April	sts <u>b</u> /	FGE <mark>C</mark>	FGE <u>C</u> /
6-8 May	STS	STS	FGE
9 May	VD	-	FGE
10-15 June	VD	-	FGE

Table 1.--Vertical distribution (VD) and fish guiding efficiency (FGE) test schedule conducted at Lower Monumental Dam, 1986.

a/ - = Slot open, no fyke net frames or STS installed.

 \overline{b} / STS = Submersible traveling screen only, no fyke net frames attached.

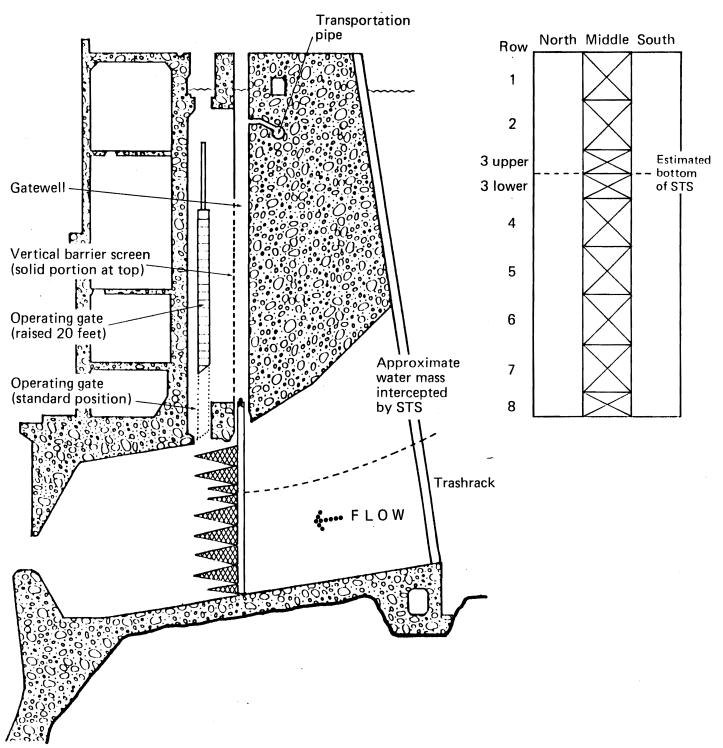
 \overline{c} / Operation gate raised 20 feet from standard position on alternating days.

- 8) All remaining fish were dipped from the gatewells, and the STS was retracted from the extended position.
- 9) The net frames were lifted back to deck level, and net-caught fish were removed for identification and enumeration.

Fork length frequencies (± 2.5 mm) were determined from a sample of captured fish. Generally a sample of both gatewell and netted fish were measured. In general, yearling chinook salmon pass the project during the spring (April-May) whereas subyearling chinook salmon (mostly from Lyons Ferry Hatchery) migrate in June (R. Strain $\frac{1}{}$). Chinook salmon were separated into yearling and subyearling categories on the basis of fork length (Dawley et al. 1985). During April and May, chinook salmon exceeding 57 mm in length were defined as yearlings, and during June, 112 mm was used as the separation point. The separation point during June was determined in part by length/frequency measurements of subyearling chinook salmon measured at Lyons Ferry Hatchery on the day the fish were released (D. Brown $\frac{2}{}$).

The effects of the STS on fish quality were determined using a descaling index for fish recovered from the gatewells. Descaling was determined by visually dividing each side of the fish into five equal areas; if any two areas on a side were 50% or more descaled, the fish was classified as descaled. $\frac{3}{}$

2/ D. Brown, Washington Department of Fisheries, Lyons Ferry Hatchery, P. O. Box 278, Starbuck, Washington 99359 pers. commun. 1986.


^{3/} The standard fish descaling index originated at an inter agency workshop conducted by Steve Pettit, Idaho Department of Fish and Game, at McNary Dam on 29 March 1983.

VD Tests

Vertical distribution tests were conducted to verify the depth that fish enter the turbine unit and to determine the proportion of fish that potentially could be guided into the gatewell by an STS--termed theoretical FGE (TFGE). At Lower Monumental Dam, this included all fish located in approximately the upper 16 feet of the intake--down to the depth of the third fyke net (Fig. 2).

All VD tests were conducted using only a center vertical column of nine fyke nets.^{4/} The nets were designed to sample 1/3 of the flow through the intake at a given depth. The nets were attached to a fyke net frame extending from the ceiling to the floor of the intake. Side nets and net frames were removed to minimize mortality of fish in the fyke nets. Most nets were 6.5 feet high by 7.0 feet wide. Nets at Level 3, though, were divided into upper and lower halves (3U and 3L) so that we could measure TFGE. The numbers of fish collected in the center nets at each level were multiplied by 3 to estimate the total fish passing at the various depths in the intake. The cumulative percentage of fish captured from the gatewell plus the estimated number down to Net Level 3U provided the measure of TFGE.

^{4/} The assumption that the middle nets catch 1/3 of the total fish passing through the intake was statistically evaluated using data from past years collected at various dams where a full complement of nets were fished (n=227 samples) (F. Ossiander, statistician, NMFS Seattle, WA, pers. comm. to T. Barila, COE, Walla Walla, WA, 10 March 1986). No evidence was found to reject the 1/3 assumption; consequently, only middle nets were used during VD tests at Lower Monumental Dam.

Lower Monumental Dam cross section

Fyke net layout

Figure 2.--Cross section of a typical turbine intake at Lower Monumental Dam showing vertical distribution net frame in place and a front view showing layout of fyke nets, 1986.

FGE Tests

Fish guiding efficiency tests were conducted to determine what proportion of the fish entering the intake were being guided into the gatewell slot by the STS and to determine the increase in FGE obtained by raising the operating gate 20 feet. All STSs were modified to extend about 30 inches lower in the intake than standard (Swan et al. 1983) and were extended into the flow at a 54° operating angle (Fig. 1).

A composite of nets was attached to the STS to recover unguided fish that would normally pass through the turbine (Fig. 1). Guided fish were recovered from the gatewell above the STS. The following net configuration was used for most tests: gap nets (two) attached near the top of the STS to capture fish which pass through the space between the top of the STS and the ceiling of the intake, closure nets (two) attached to the back of the STS for capturing unguided fish escaping below the STS above the attached fyke net frame, and fyke nets (five rows) suspended below the STS on the attached net frame. The top three rows of fyke nets contained three nets and each net row extended completely across the intake; the bottom two rows contained only the center net. $\frac{5}{}$ The fyke nets at Row 1 were about one-half the size of the other fyke nets (2.3 by 7.0 feet vs 6.5 by 7.0 feet) except for the Level 5 net which was 3.2 by 7.0 feet.

For the evaluation of the raised operating gate test condition, Gatewell Slots 4B and 4C each contained an STS with fyke net frame; Slot 4A contained only an STS (Table 1). $\frac{6}{}$ On alternate days, the operating gate was raised 20

^{5/} During FGE tests on 10, 11, and 12 June, only middle nets were fished at Levels 1-5.

^{6/} Gatewell slots, three per turbine unit, are designated A, B, and C in a north to south direction (right to left facing downstream) across the dam-this is opposite from slot designations used at most other dams.

feet above the ceiling of the intake in either Slot 4B or 4C--the other slots had a standard operating gate. This cross-over method (Cochran and Cox 1957) was followed for six consecutive days, providing a balanced design containing three trials in each gatewell slot for each test condition.

FGE was calculated as the number of guided fish divided by the total number of fish passing through the intake during the test period (Swan et al. 1983):

FGE (%) = _____ gatewell catch X 100 (gatewell catch + adjusted total net catch)

where:

adjusted total net catch = total catch by net row adjusted for any missing nets.

Data Analyses

Sample Size Requirements

On 11 April 1986, a meeting was held between NMFS and COE biologists and statisticians to provide guidelines for the numbers of fish required for statistical validation of VD and FGE tests given various net configurations and guidance values. For VD tests using a single vertical row of nets and assuming 10% volitional guidance into the gatewell, the desired sample was 200 actual net-caught fish. If volitional guidance was higher, slightly fewer net-caught fish were needed. For FGE tests with full net coverage down to Level 3 and only center nets at Levels 4 and 5, the desired sample was 200 fish, including gatewell fish. This number assumes FGE>60%; if FGE<60%, side nets could be removed and the desired sample for validation increased to 250 fish.

Number of Required Replicates

For comparing differences between treatment conditions, a minimum of three but preferably five replicates were recommended. A total of six tests were conducted in adjacent gatewells to compare the raised to the standard operating gate condition--three tests for each condition, on alternate days.

Statistical Comparisons

Cross-over analysis of variance using the Latin square method (Cochran and Cox 1957) was used to determine if the raised operating gate significantly increased FGE over the standard gate setting ($P \ge 0.05$, 1-tailed test) (Appendix B). The analysis was a balanced design (equal number of trials for each test condition) evaluating a single test extending over 6 days.

RESULTS

There were no apparent seasonal differences for VD or FGE for yearling or subyearling chinook salmon (Fig. 3) so the data were pooled to discuss depth distributions and seasonal averages.

VD Tests

Vertical distribution tests showed that about 91, -87, and 61% of yearling chinook salmon, steelhead, and subyearling chinook salmon, respectively, were located in the water mass that could potentially be intercepted and diverted into the gatewell by the STS (Appendix A, Table A3). Lowering the minimum accepted sample from 200 to 60 net-caught fish allowed retention of data for steelhead and yearling chinook salmon from the single May test (67 and 60 fish, respectively) and for subyearling chinook salmon on 13 June (104 fish) with little effect on the average TFGE (Table 2). Volitional guidance (no STS) was higher than the expected 10% during April and May (average 18%) and lower during June (5%). Descaling rates of gatewell caught fish were less than 10% for all species (Table 2).

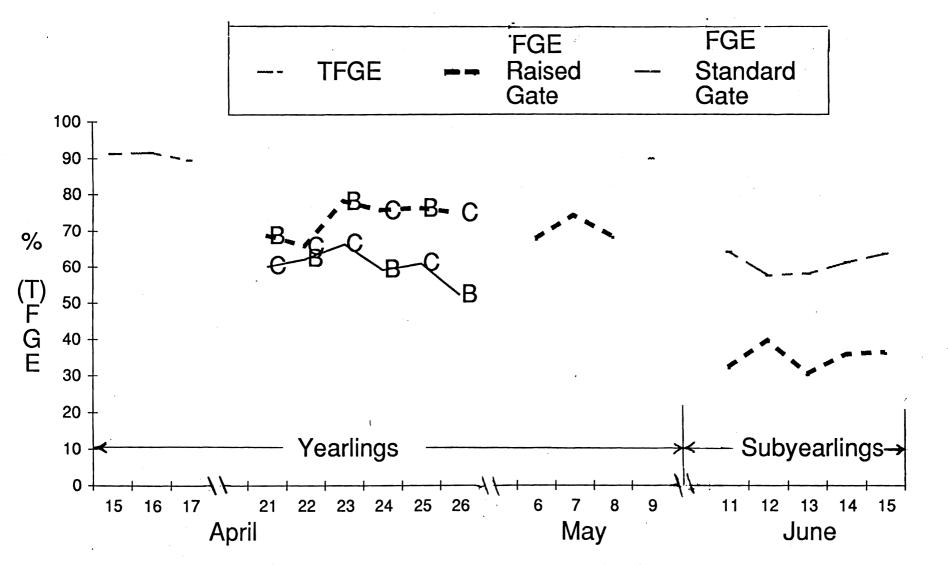


Figure 3.--Theoretical fish guiding efficiency (TFGE) and fish guiding efficiency (FGE) over time for yearling and subyearling chinook salmon at Lower Monumental Dam, 1986. Letters B and C designate the gateslot of Unit 4 where tests were conducted to compare the effects on FGE resulting from raising the operating gate 20 feet above the standard position.

Date	Species	Actual c Gatewell	Nets	Adjusted total catch	Descaled <u>b</u> / (%)	TFGE <u>C</u> / (%)
15 April	Yr. chinook sal.	113	157	584	6.2	91.3
16 April	••	177	291	1050	2.8	91.7
17 April	••	100	150	550	7.0	89.6
9 May	••	33	60	213	9.1	90.1
9 May	Steelhead	50	67	249	4.0	89.6
11 June	Subyr. chinook sal.	54	298	948	0.0	64.2
12 June		30	351	1083	0.0	57.6
13 June	••	11	104	323	0.0	58.2
14 June	••	37	166	535	2.7	61.3
15 June	"	70	354	1132	1.4	63.7

Table 2.--Vertical distribution catch data $\frac{a}{a}$ and descaling rate for juvenile salmonids, Lower Monumental Dam, 1986.

a/ Data for species having at least 60 net caught fish.

b/ Gatewell catch only.

c/ TFGE = (Gatewell catch + adjusted net catch through Row 3U/Total adjusted catch) x 100.

FGE Tests

Raising the operating gate significantly ($P \le 0.05$) increased the FGE for yearling chinook salmon (73.1 versus 60.2%) (Table 3). Numbers of steelhead collected in most tests were insufficient for a comparable analysis. Based on data from three tests where sufficient numbers of steelhead were collected, there appeared to be little benefit from the raised gate (Appendix Table A4).

Except for a single test for steelhead (6 May, 47%), there were no apparent differences in FGE between April and May test periods (raised gate only) so the data were pooled for each species (Appendix Table A5). During April and May, the mean FGEs for yearling chinook salmon and steelhead were a comparable 73.0 and 74.2%, respectively. In contrast, during June, the mean FGE for subyearling chinook salmon was only 35.2%. Descaling rates of guided fish were low: 5.0, 2.1, and 0.3% for yearling chinook salmon, steelhead, and subyearling chinook salmon, respectively, which were not significantly different (P>0.05) than descaling rates of volitionally guided fish examined during VD tests when no STS was used.

There were no apparent differences in length distributions between gatewell and net-caught chinook salmon (mean lengths are presented in Appendix Table A6).

DISCUSSION

Fish guiding efficiencies of the STSs were improved to the interim acceptable level (>70%) (Swan et al. 1986) for yearling chinook salmon by lifting the operating gate 20 feet above the standard position whereas FGEs for steelhead were >70% regardless of gate position. FGE for subyearling chinook was much less than desired, even with the gate raised. The 54°

		FGE (%)	
Test day	Raised 20 ft. (test)	Standard position (control)	Difference (%)
1	68.6	60.2	8.4
2	65.6	62.3	3.3
3	78.0	66.4	11.6
4	75.5	59.2	16.3
5	76.1	61.0	15.1
6	74.8	52.2	22.6
Average	73.1	60.2	12 .9<u>a</u>/

Table 3.--Effects of operating gate position on fish guiding efficiency (FGE) of yearling chinook salmon at Lower Monumental Dam, 21-26 April 1986.

<u>a</u>/ Significant ($P \le 0.05$) benefit from the raised operating gate, Latin square crossover analysis of variance (Appendix B).

-

operating angle of the STS did not cause excessive descaling of fish. Should all turbine units at Lower Monumental Dam be fitted with STSs, permanent modification of the operating gates to sit higher in the intake would provide increased protection for chinook salmon.

The cross-over statistical design was used to isolate date and slot effects on FGE from the treatment effect (gate position) and the appropriate error term for yearling chinook salmon. From the relatively small values for square, column, and row mean squares compared to the treatment term (Appendix B, Section I, ANOVA table), it would appear that these factors played a minor role in the overall variation in FGE. The nearly 15% increase in FGE obtained by raising the operating gate was barely significant using a 1-tailed test. The difficulty in demonstrating a significant treatment effect was due to the loss of degrees of freedom (df) inherent with Latin square cross-over designs, i.e., 6 days of testing provided only 2 df for the sample error term. If an error term with greater df could be used, the cross-over design would eliminate variation due to location (slot) and time (day) and still have sufficient df to give high power. Such an error term can be obtained by pooling error terms from similar tests conducted previously at other dams. This assumes that experimental error is the same across the various studies, a seemingly realistic assumption.

Error terms obtained from cross-over studies comparing the effects of operating gate manipulations conducted at Lower Granite, Little Goose, and Lower Monumental Dams were pooled to give an error mean square=23.22 with df=11 (Appendix B, Section III). When the pooled error was used to evaluate the treatment effect at Lower Monumental Dam, the observed difference in FGE was highly significant, even using a 2-tailed test (F=21.44, 1 and 11 df) (P<0.001).

Depending on species/race, FGEs (with raised operating gate) were 13 to 26% lower than TFGEs (with standard operating gate). Theoretical guidances are generally higher than actual guidances because VD tests are performed with no STS in the gatewell. The STS serves to restrict the flow into the screened portion of the intake which evidently tends to divert some water (and fish) deeper into the intake below the screen thus lowering the numbers of fish reaching the gatewell (Krcma et al. 1986; Swan et al. 1983). The difference between theoretical and actual guidance was smaller for yearling fish than for subyearling fish which suggests that yearling fish were more concentrated in the upper portion of the water column entering the intake and were less affected by the downward diversion of water than the smaller more uniformly distributed subyearling fish.

ACKNOWLEDGMENTS

We extend a special thanks to the COE personnel at Lower Monumental Dam for their assistance and cooperation in conducting these studies. A special thanks to Mr. Jim Hay (COE, Maintenance Supervisor) and the rest of the maintenance crew for the diligent efforts to keep the gantry crane in service. Special thanks also to Mr. Ron Strain and the entire gatewell monitoring crew of the Washington Department of Game for the assistance and cooperation provided while estimating fish movement into the powerhouse during FGE and VD tests. This helped minimize the numbers of fish sacrificed during the study.

LITERATURE CITED

Cochran, W. G., and G. M. Cox. 1957. Experimental designs. John Wiley and Sons, Inc. New York. 611 p.

Dawley, E. M., R. D. Ledgerwood, and A. L. Jensen.

1985. Beach and purse seine sampling of juvenile salmonids in the Columbia River estuary and ocean plume, 1977-1983; Volume I: Procedures, Sampling Effort and Catch Data. U.S. Dep. Commer., NOAA Tech. Memo. NMFS, F/NWC-74:260 p.

1974. Traveling screens for turbine intakes of hydroelectric dams. In L. D. Jensen (ed.). Proc. of the second workshop on entrainment and intake screening. Pp. 199-203. The Johns Hopkins University cooling water research project, Report No. 15.

Krcma R. F., D. A. Brege, and R. D. Ledgerwood

1986. Evaluation of the rehabilitated juvenile salmonid collection and passage system at John Day Dam--1985. Annual Report to U.S. Army Corps of Engineers by National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, WA 98112. Contract DACW57-85-H-0001. 30 p.

Raymond, H. L.

1979. Effects of dams and impoundments on migrations of juvenile chinook salmon and steelhead from the Snake River, 1966 to 1975. Trans. Am. Fish. Soc., 108:505-569.

Park, D. L., G. M. Matthews, J. R. Smith, T. E. Ruehle, J. R. Harmon, and S. Achord.

1984. Evaluation of transportation of juvenile salmon and related research on the Columbia and Snake Rivers, 1983. Annual Report to U.S. Army Corps of Engineers by National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, WA 98112. Contract DACW68-78-C-0054). 58 p.

Swan, G. A., R. F. Krcma, and W. E. Farr. 1979. Dipbasket for collecting juvenile salmon and trout in gatewells at hydroelectric dams. Prog. Fish Cult. 41(1):48-49.

Swan, G. A., R. F. Krcma, and F. Ossiander.

1983. Studies to improve fish guiding efficiency of traveling screens at Lower Granite Dam. Final Report to U.S. Army Corps of Engineers by National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, WA 98112. Contract DACW68-78-C-0051. 20 p. plus Appendixes.

Swan, G. A., R. F. Krcma, and F. Ossiander. 1985. Development of an improved fingerling protection system for Lower Granite Dam--1984. Final Report to U.S. Army Corps of Engineers by National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, WA 98112. Contract DACW68-84-H-0034. 33 p.

Farr, W. E.

Swan, G. A., R. F. Krcma, and F. Ossiander.

1986. Continuing studies to improve and evaluate juvenile salmonid collection at Lower Granite Dam--1985. Annual Report to U.S. Army Corps of Engineers by National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, WA 98112. Contract DACW68-84-H-0034. 37 p.

APPENDIX A

Catch and catch distribution data and mean fork lengths of juvenile salmonids.

.

.

Appendix Table A1.--Catch, descaling, and fish guiding efficiency (FGE) from submersible traveling screen evaluation studies conducted at Lower Monumental Dam, 1986. •

	•		. !	studies cond	ucted	at L	.ower	nonum	ental	lia n , 1	986.											,		
•		/	• •	b/	c/				4					d/						ł	Adjusted	Gate	<u>ell</u>	f/
•	Date	<u> </u>	\$1o	t Test ^{er} S	ips.							<u>Net</u>	<u>cotche</u>	<u>s</u> "							total	Catch	Descole	FGE
		Start E	nd	Condition	·	LG	RG	LC	RC	LI	M1	R1	L2	M2	R2	L3	X3	R3	<u>,</u> 84	H5			(%)	(%)
	4721 4/21 4/21 4/22 4/22 4/22 4/22 4/23 4/23 4/23 4/23	2028 22 2028 22 2028 22 2028 22 2000 21 2000 21 2000 21 2000 21 2000 21 2000 21 2000 21 1828 21 1828 21 1828 21 1820 20 1820 20 1820 20 1820 20 1820 20 1820 20 1830 20 1830 20 1830 20 1830 20 1825 22 1825 23 1905 23 1956 00 1958 00 2000 22 2000 22 2000 02 2000 02 2000	433 433 434 434 434 44 44 44 44 44 44 44	Raised + Raised + Standard+ Standard+ Raised + Raised + Raised + Standard+ Standard+ Standard+ Standard+ Standard+ Standard+ Raised + Raised + Rais	65656565656565656	00n10401060202400504050104341183100000700600400400600 /////////////////////////	0010406010001303040814090345113400010100200300500500	$\begin{array}{c} 20\\ 1\\ 1\\ 1\\ 21\\ 1\\ 3\\ 0\\ 1\\ 5\\ 1\\ 5\\ 6\\ 6\\ 4\\ 5\\ 1\\ 1\\ 5\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 6\\ 6\\ 1\\ 1\\ 1\\ 1\\ 5\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 14 \\ 1 \\ 20 \\ 2 \\ 0 \\ 7 \\ 0 \\ 15 \\ 6 \\ 17 \\ 6 \\ 7 \\ 0 \\ 1 \\ 2 \\ 2 \\ 5 \\ 2 \\ 4 \\ 5 \\ 2 \\ 5 \\ 2 \\ 4 \\ 5 \\ 6 \\ 7 \\ 18 \\ 0 \\ 4 \\ 0 \\ 0 \\ 18 \\ 2 \\ 17 \\ 0 \\ 14 \\ 0 \\ 0 \\ 14 \\ 0 \\ 0 \\ 0 \\ 14 \\ 0 \\ 0 \\ 0 \\ 14 \\ 0 \\ 0 \\ 0 \\ 0 \\ 14 \\ 0 \\ 0 \\ 0 \\ 0 \\ 14 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	30104020024582419461339222406000	2110305561312020111315114767602000800702600601710	50300030425343923081104134844301	12050201113611532311420821565343579601	704010011183764041550117112211114810901061001102102004901 001011837640455011711221114810901061005110201026004901	$\begin{array}{c} 10\\ 0\\ 11\\ 1\\ 10\\ 20\\ 1\\ 10\\ 5\\ 12\\ 2\\ 4\\ 30\\ 3\\ 10\\ 0\\ 12\\ 4\\ 22\\ 1\\ 4\\ 22\\ 1\\ 4\\ 5\\ 10\\ 19\\ 11\\ 8\\ 10\\ 8\\ 3\\ 5\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$		10503070303452532001815005300112000402900600401900	506140710194631111040005150343104	2010400000101001050000021010301130000000701	10000001100000000000000000000000000000	$\begin{array}{c} 89\\ 3\\ 82\\ 3\\ 149\\ 103\\ 4\\ 86\\ 35\\ 54\\ 134\\ 29\\ 54\\ 134\\ 29\\ 72\\ 59\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 17\\ 259\\ 10\\ 10\\ 25\\ 37\\ 2\\ 4\\ 138\\ 196\\ 25\\ 373\\ 2\\ 4\end{array}$	$\begin{array}{c} 194\\ 1\\ 124\\ 10\\ 246\\ 6\\ 196\\ 305\\ 171\\ 192\\ 189\\ 523\\ 165\\ 412\\ 76\\ 229\\ 43\\ 139\\ 523\\ 165\\ 229\\ 43\\ 283\\ 84\\ 323\\ 56\\ 111\\ 722\\ 352\\ 188\\ 172\\ 203\\ 28\\ 121\\ 0\\ 25\\ 24\\ 218\\ 121\\ 203\\ 28\\ 121\\ 16\\ 210\\ 11\\ 18\\ 60\\ 0\\ 4\\ 109\\ 17\\ 212\\ 16\\ 16\\ 17\\ 212\\ 16\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 109\\ 17\\ 17\\ 212\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 109\\ 17\\ 212\\ 16\\ 16\\ 109\\ 109\\ 17\\ 212\\ 16\\ 109\\ 109\\ 17\\ 212\\ 16\\ 109\\ 109\\ 17\\ 212\\ 16\\ 109\\ 109\\ 109\\ 109\\ 109\\ 109\\ 109\\ 109$	3040.50003620683070605031545175600000000000000000000000000000000000	752.00 762.5.7.60 762.5.7.60 762.5.7.60 75.00 75.00 75.00 77.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7

N

;:

Nonth/day. Raised=Operation gate up 20 feet; Standard= operation gate in normal position; + = 150 or more actual fish in the test. Species codes: 5= yearling chinook salmon, 6= steelhead, 9= subyearling chinook salmon. Net codes: 1st character, L=1eft, H=middle, R=right; 2nd character, G=gap, C=closure, 1-5 = fyke net level (Fig. 1). Actual net cotch ajdusted for any missing nets. FGE =Gatewell catch/(Gatewell catch + Total adjusted net catch) X 100. Net lost during test, catch estimated.

Appendix Table A2.--Catch, descaling, and theoretical fish guiding efficiency (TFGE) for vertical distribution tests conducted at Lower Monumental Dam, 1986. ~/

Date g	/ Start	me End	Slot	<u>b</u> Flag	/ Sps.	<u>c</u> / RI	82	-M30	-M3E	<u>Net co</u> M4	<u>tches</u> M5	-82		djusted total	<u>Gat</u>	evell Descale (Z)	f/ TFGE (2)
4715 4/15 4/16 4/17 4/17 5/09 5/09 6/10 6/10 6/10 6/10 6/11 6/12 6/12 6/12 6/12 6/12 6/13 6/14 6/14 6/15 6/15	2024 2024 1858 1830 1830 2025 2025 1958 1958 1958 2000 2000 2000 2000 2000 2000 2000 20	-2248 2248 2158 2158 2250 0020 0032 0032 0032 0032 2248 2248 2248 2248 2248 0021 0021 0016 0405 0405 0405 0405 0209 0209	- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		5 6 5 6 5 6 5 6 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9	$\begin{array}{c} 73 \\ 73 \\ 162 \\ 86 \\ 82 \\ 45 \\ 42 \\ 00 \\ 94 \\ 22 \\ 94 \\ 231 \\ 34 \\ 44 \\ 114 \\ 114 \end{array}$	-41 812351 1681502163028003904 76		11 0 13 0 11 0 1 3 0 0 0 0 21 0 0 38 1 9 0 0 21 0 0 21 0 0 21 0 0 21 0 0 21 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 11 0 6 0 2 6 1 1 0 0 4 8 0 0 4 8 0 0 5 6 0 15 0 0 31 0 0 4 8 0 0 5 6 0 15 0 1 0 0 2 6 1 1 0 0 2 6 1 1 0 0 2 6 1 1 0 0 2 6 1 1 0 0 0 2 6 1 1 0 0 0 2 6 1 1 0 0 0 2 6 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0		I 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	471 3 873 27 450 27 180 201 21 30 9 6 894 6 15 1053 9 312 21 498 312 21 498 324 1062	$ \begin{array}{r} 113 \\ 10 \\ 177 \\ 10 \\ 10 \\ 16 \\ 33 \\ 50 \\ 10 \\ 14 \\ 3 \\ 50 \\ 10 \\ 14 \\ 3 \\ 10 \\ 54 \\ 0 \\ 8 \\ 30 \\ 2 \\ 11 \\ 3 \\ 12 \\ 37 \\ 1 \\ 7 \\ 70 \\ \end{array} $	6.2 0.0 2.8 0.0 7.3 9.1 10.1 0.0	91.3 100.0 91.7 100.0 87.6 100.0 90.1 86.9 90.3 93.2 75.0 100.0 81.3 64.2 100.0 100.0 57.6 72.7 58.2 100.0 100.0 61.3 100.0 63.7

a7-Month/day. b/ Records with a + indicate an actual net catch greater than 60. c/ Species codes: 5=yearling chinook salmon, 6=steelhead, 9=subyearling chinook salmon. d/ Only middle nets used; net codes: 1st character, M=middle; 2nd character=net level (Fig. 2); 3rd character U=upper L=lower net.

1

.

.

.

e/ Actual net catch adjusted for any missing nets. f/ IFGE=(Adjusted net catch through level 30 + Gatewell catch)/(Total adjusted net catch + Gatewell catch) X 100

Appendix Table A3.--Vertical distribution and theoretical fish guiding efficiency (TFGE) of juvenile salmonids at Lower Monumental Dam in 1986.

		YEARLIN	G CHINOOK S	almon		STEELHEA	<u>b</u> 7 D	SUBYEA	RLING CHINO	ok salnon
Vertical position		<u>d/</u> Actual catch	e/ Ad.justed catch	/ Accumulative percent	Actual catch	Ad.justed catch	Accumulative percent	Actual catch	Ad.justed catch	Accumulative percent
Gatewell Net row	1 2 3 3 4 5 6 7 8	77 423 373 173 40 36 24 9 2 1 0	423 1119 519 120 108 72 27 6 3 0	17.6 64.3 86.0 91.0=TFGE 95.5 98.5 98.5 99.6 99.9 100.0 100.0	<u>9</u> 7 50 45 8 3 3 6 1 0 1 0	50 135 24 9 9 18 3 0 3 0	19.9 73.7 83.3 86.9=TFGE 90.4 97.6 98.8 98.8 100.0 100.0	202 377 276 103 114 214 136 43 8 2	202 1131 828 309 342 642 408 129 24 6	5.0 33.2 53.7 61.4=TFGE 69.9 85.9 96.0 99.3 99.9 100.0
Totals		1081	2397		117	251		1477	4021	

.

÷.

a/ Accumulated catch from 15-17 April and 9 May. b/ Catch from 9 May. c/ Accumulated catch from 11-15 June. d/ Middle nets only (side nets removed). e/ Middle net catch X 3 for misssing side nets. f/ Descaled (X) = 6.3 g/ Descaled (X) = 4.0 h/ Descaled (X) = 0.8

Appendix Table A4.--Catch distribution and fish guiding efficiency (FGE) of yearling chinook salmon and steelhead comparing<u>a</u>/ effects of operating gate position on FGE at Lower Monumental Dam, 1986.

FGE (%): 59.2

1011

Adjusted: 1037

YEARLING CHINOOK SALMON

20 ft. Raised Gate (test) Standard gate (control)

Net				Ad.justed Catch				Adjusted Catch
Gap	13		23		48	<u> </u>		87
•	101	<u>b</u> ∕ <u>b</u> ∕	70	171	179	<u>b</u> /	167	346
Fyke row 1	27	29	30	86	46	64	51	161
Fyke row 2	67	66	94	227	93	92	100	285
Fyke row 3	18	23	23	64	46	34	39	119
Fyke row 4	<u>c</u> /	2	<u>c</u> /	6	<u>c</u> ∕	13	<u>c</u> /	39
Fyke row 5	<u>c</u> /	1	<u>c</u> /	3	<u>c</u> /	0	<u>c</u> /	0
				Catch Tota	ls			
Gatewell: 1	1659	Nets	5‡		Gatew	ell: 15	i07	Nets:
Descaled	(%):	4.1 Ac	:tual:	587	Des	caled (%): 6.	1 Actual:

STEELHEAD

FGE (%): 73.7 Ad.justed: 593

20_ft. Raised Gate (test) Standard gate (control)

Net		u <u>al_cato</u> Middle		Ad.justed Catch		<u>ual_cat</u> Middle		Adjusted Catch
Gap	0	<u>b</u> /	0	0	4	<u>b</u> /	0	4
Closure	5	<u>b</u> ∕	6	11	9	<u>b</u> /	15	24
Fyke row 1	2	5	2	9	7	2	6	15
Fyke row 2	6	3	5	14	8	10 -	16	34
Fyke row 3	0	0	1	1	5	6	7	18
Fyke row 4	<u>c</u> /	0	<u>c</u> /	0	<u>c</u> /	0	<u>c</u> /	0
Fyke row 5		0	<u>c</u> /	0		0	<u>c</u> /	0
								May alayo kana Milili alafa dalay may alayo kana ayad

Catch totals

Gatewell: 171	Nets:	Gatewell: 354	Nets:
Descaled(%): 7.6	Actual: 35	Descaled (%): 1	L.4 Actual: 95
FGE (%): 83.0	Adjusted: 35	FGE (%): 78.8	Adjusted: 95

a/ Only data for tests having a daily minimum of 150 fish were used. b/ Gap and closure nets (two each) extended half way across the row. c/ Only middle nets were used at rows 4 and 5.

Appendix Table A5.--Fish guiding efficiency (FGE) and catch distribution for juvenile salmonids with operating gate raised 20 feet, Lower Monumental Dam 1986.

	YEARLING CHINOOK SALMON	STEELHEAD	SUBYEARLING CHINOOK SALMON
Net	<u>Actual catch</u> Adjusted Ceft Middle Right Catch	<u>Actual catch</u> Adjusted Ceft Middle Right Catch	Actual catch
Gap Closure Fyke row 1 Fyke row 2 Fyke row 3 Fyke row 4 Fyke row 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Catch	totals	
Gatewell: 2294 Descaled (%) FGE (%): 73.0	: 5.0 Actual: 837	Gatewell: 775 Nets: Descaled (%): 2.0 Actual: 25 FGE (%): 74.2 Adjusted:	Gatewell: 809 Nets: 52 Descaled (%): 0.3 Actual: 1435 262 FGE (%): 35.2 Adjusted: 1487
b/ Accumulated catch c/ Accumulated catch d/ On 10,11, and 12 data shown for le e/ Gap and Closure r	n data from nine tests conducted n data from five tests conducted n data from five tests conducted June only middle nets were used eft and right actual catch has be nets (two each) extended half way were used at row's 4 and 5.	23 April-9 May, 11-15 June, at row's 1-3 and the en adjusted for missing nets,	

26

Appendix Table A6,--Mean fork lengths (mm) of chinook salmon during vertical distribution (VD) and fish guiding efficiency (FGE) tests at Lower Monumental Dam, 1986.

Date Test Gatewell Gatewell Nets 15 April VD 4B 147.6 149.4 16 April VD 4B 145.5 136.8 17 April VD 4B 141.4 136.2 21 April FGE 4B 143.4 143.7 21 April FGE 4C 149.1 140.3 22 April FGE 4C 147.1 140.3 22 April FGE 4C 147.1 140.3 22 April FGE 4C 147.1 140.3 23 April FGE 4C 150.2 149.8 24 April FGE 4B 145.1 144.4 24 April FGE 4B 138.9 137.4 25 April FGE 4C 142.8 140.6 26 April FGE 4B 134.2				Mean lengt	hs-(mm)
16 April VD 4B 145.5 136.8 17 April VD 4B 141.4 136.2 21 April FGE 4B 143.4 143.7 21 April FGE 4C 149.1 140.3 22 April FGE 4C 149.1 140.3 22 April FGE 4C 154.3 23 April FGE 4C 154.3 23 April FGE 4C 150.2 149.8 24 April FGE 4C 150.2 149.8 24 April FGE 4C 150.9 153.3 25 April FGE 4C 142.8 140.4 24 April FGE 4C 142.8 140.4 25 April FGE 4C 142.8 140.6 26 April FGE 4B 133.5 6 May STSb/ 4A 133.5 6 May FGE 4B 134.2 7 May FGE 4C 133.3 <th>Date</th> <th>Test</th> <th>Gatewell</th> <th></th> <th></th>	Date	Test	Gatewell		
16 April VD 4B 145.5 136.8 17 April VD 4B 141.4 136.2 21 April FGE 4B 143.4 143.7 21 April FGE 4C 149.1 140.3 22 April FGE 4C 149.1 140.3 22 April FGE 4C 154.3 23 April FGE 4C 154.3 23 April FGE 4C 150.2 149.8 24 April FGE 4C 150.9 153.3 25 April FGE 4C 150.9 153.3 25 April FGE 4C 142.8 140.6 26 April FGE 4C 142.8 140.6 26 April FGE 4B 133.5 6 May STSb/ 4A 133.5 6 May FGE 4B 134.2 7 May FGE 4B 134.5	15 Apri	1 VD	 4B	147.6	149,4
17 AprilVD4B141.4136.221 AprilFGE4B143.4143.721 AprilFGE4C149.1140.322 AprilFGE4C149.1140.322 AprilFGE4C151.9148.922 AprilFGE4C154.323 AprilFGE4C150.2149.824 AprilFGE4C150.2149.824 AprilFGE4C150.9153.325 AprilFGE4E138.9137.425 AprilFGE4E142.9142.426 AprilFGE4B142.9142.426 AprilFGE4B133.56 MaySTSb/4A133.57 MayFGE4B134.27 MayFGE4B134.57 MayFGE4B133.3131.38 MayFGE4B135.77 MayFGE4C131.57 MayFGE4C131.57 MayFGE4C131.59 MayFGE4C131.59 MayFGE4C85.284.311 JuneVD4A85.513 JuneVD4A85.513 JuneVD4A86.284.014 JuneVD4A86.284.0 <tr<< td=""><td>•</td><td></td><td>4B</td><td>145.5</td><td>136.8</td></tr<<>	•		4B	145.5	136.8
21 AprilFGE4B 143.4 143.7 21 AprilFGE4C 149.1 140.3 22 AprilFGE4B 151.9 148.9 22 AprilFGE4C $$ 154.3 23 AprilFGE4C 150.2 149.8 24 AprilFGE4C 150.2 149.8 24 AprilFGE4C 150.9 153.3 25 AprilFGE4C 150.9 153.3 25 AprilFGE4B 138.9 137.4 25 AprilFGE4C 142.8 140.6 26 AprilFGE4B 142.9 142.4 26 AprilFGE4B 133.5 $$ 6 MaySTSb/4A 133.5 $$ 6 MayFGE4B 134.2 $$ 7 MayFGE4B 134.2 $$ 7 MayFGE4C 133.3 131.3 8 MaySTS4A 133.8 $$ 7 MayFGE4C 131.5 $$ 7 MayFGE4C 131.5 $$ 9 MayFGE4C 131.5 $$ 9 MayFGE4C 85.2 84.3 11 JuneVD4A 85.2 84.3 11 JuneVD4A 85.5 $$ 13 JuneFGE4C 87.4 84.0 14 JuneVD4A 86.2 84.0 14 JuneVD4A 86.2 8			4B	141.4	136.2
21AprilFGE4C149.1140.322AprilFGE4B151.9148.922AprilFGE4C154.323AprilFGE4B23AprilFGE4C150.2149.824AprilFGE4C150.9153.325AprilFGE4C142.9144.424AprilFGE4C142.8140.625AprilFGE4C142.9142.426AprilFGE4B133.56MaySTSb/4A133.56MayFGE4B134.26MayFGE4C132.77MayFGE4C133.3131.38MayFGE4C133.3131.38MayFGE4C133.3131.38MayFGE4C131.57MayFGE4C131.59MayFGE4C131.59MayFGE4C131.59MayFGE4C131.59MayFGE4C131.59MayFGE4C131.510JuneVD4A85.284.311JuneFGE <td>•</td> <td></td> <td>4B</td> <td>143.4</td> <td>143.7</td>	•		4B	143.4	143.7
22AprilFGE4B151.9148.922AprilFGE4C154.323AprilFGE4B23AprilFGE4C150.2149.824AprilFGE4C150.9153.325AprilFGE4C145.1144.424AprilFGE4C142.8140.625AprilFGE4C142.8140.626AprilFGE4B134.2140.96MaySTSb/4A133.56MayFGE4B134.26MayFGE4C132.77MayFGE4C133.3131.38MayFGE4C133.3131.38MayFGE4C133.3131.38MayFGE4C131.57MayFGE4C131.57MayFGE4C131.59MayFGE4C131.59MayFGE4C131.59MayFGE4C131.59MayFGE4C87.784.511JuneVD4A85.513JuneFGE4C87.484.014JuneVD4A86	•		4C	149.1	
22AprilFGE4C154.323AprilFGE4B23AprilFGE4C150.2149.824AprilFGE4C150.9153.325AprilFGE4C150.9153.325AprilFGE4B138.9137.425AprilFGE4C142.8140.626AprilFGE4C141.2140.926AprilFGE4C141.2140.926MaySTSb/4A133.526MayFGE4B134.226MayFGE4C132.727MayFGE4C133.3131.33MayFGE4C133.3131.33MayFGE4C133.3131.33MayFGE4C131.57MayFGE4C131.58MayFGE4C131.59MayFGE4C87.784.511JuneVD4A85.513JuneFGE4C87.484.014JuneVD4A86.284.014JuneVD4A86.284.014JuneVD4A86.284.014JuneVD <t< td=""><td>•</td><td></td><td></td><td>151.9</td><td></td></t<>	•			151.9	
23AprilFGE4B23AprilFGE4C 150.2 149.8 24AprilFGE4B 145.1 144.4 24AprilFGE4B 138.9 153.3 25AprilFGE4C 150.9 153.3 25AprilFGE4B 138.9 137.4 25AprilFGE4C 142.8 140.6 26AprilFGE4C 142.9 142.4 26AprilFGE4C 141.2 140.9 6MaySTSb/4A 133.5 6MayFGE4C 132.7 7MayFGE4C 132.7 7MayFGE4C 133.3 131.3 8MayFGE4C 133.3 131.3 8MayFGE4C 133.3 131.3 8MayFGE4C 131.5 9MayFGE4C 131.5 9MayFGE4C 87.7 84.5 11JuneVD4A 85.5 13JuneVD4A 86.2 84.0 14JuneVD4A 86.2 84.0 14JuneVD4A 86.2 84.0 14JuneVD4A 86.2 84.0 14JuneVD4A <t< td=""><td>•</td><td></td><td></td><td></td><td></td></t<>	•				
23AprilFGE4C150.2149.824AprilFGE4B145.1144.424AprilFGE4C150.9153.325AprilFGE4C142.8140.625AprilFGE4C142.8140.626AprilFGE4C141.2140.926AprilFGE4C141.2140.926AprilFGE4C133.526MaySTSb/4A133.527MayFGE4B134.226MayFGE4B134.527MayFGE4C133.3131.338MayFGE4C133.3131.338MayFGE4C131.57MayFGE4C131.57MayFGE4C131.57MayFGE4C131.58MayFGE4C131.59MayFGE4C87.784.511JuneVD4A84.812JuneFGE4C87.484.014JuneFGE4C87.484.014JuneFGE4C87.484.014JuneVD4A86.284.014JuneVD <t< td=""><td>•</td><td></td><td></td><td></td><td></td></t<>	•				
24 April FGE 4B 145.1 144.4 24 April FGE 4C 150.9 153.3 25 April FGE 4B 138.9 137.4 25 April FGE 4C 142.8 140.6 26 April FGE 4C 142.9 142.4 26 April FGE 4C 141.2 140.9 6 May STSb/ 4A 133.5 6 May FGE 4B 134.2 6 May FGE 4B 134.2 7 May FGE 4C 132.7 7 May FGE 4C 133.3 131.3 8 May STS 4A 133.8 7 May FGE 4C 133.3 131.3 8 May STS 4A 133.8 9 May FGE 4C 131.5 9 May FGE 4C 131.5 9 May FGE 4C 87.7 84.5 <td></td> <td></td> <td></td> <td>150.2</td> <td>149.8</td>				150.2	149.8
24 April FGE 4C 150.9 153.3 25 April FGE 4B 138.9 137.4 25 April FGE 4C 142.8 140.6 26 April FGE 4B 142.9 142.4 26 April FGE 4C 141.2 140.9 6 May STSb/ 4A 133.5 6 May FGE 4B 134.2 6 May FGE 4C 132.7 7 May FGE 4A 135.8 7 May FGE 4B 134.5 7 May FGE 4B 133.3 131.3 8 May STS 4A 133.8 7 May FGE 4C 131.5 8 May STS 4A 133.8 9 May FGE 4C 131.5 9 May FGE 4C 131.5 10 June VD 4A 84.8			4B	145.1	144.4
25 AprilFGE4B138.9137.425 AprilFGE4C142.8140.626 AprilFGE4B142.9142.426 AprilFGE4C141.2140.96 MaySTSb/4A133.56 MayFGE4B134.26 MayFGE4C132.77 MayFGE4A135.87 MayFGE4B134.57 MayFGE4B134.57 MayFGE4C133.3131.38 MaySTS4A133.88 MayFGE4C131.59 MayFGE4C131.59 MayFGE4C131.59 MayFGE4C131.59 MayFGE4C131.510 JuneVD4A85.284.311 JuneVD4A85.512 JuneFGE4C87.784.512 JuneFGE4C87.484.014 JuneVD4A85.513 JuneFGE4C87.484.014 JuneVD4A86.284.014 JuneVD4A86.284.014 JuneVD4A86.284.014 JuneVD4A86.284.0	•				
25 AprilFGE4C142.8140.626 AprilFGE4B142.9142.426 AprilFGE4C141.2140.96 MaySTSb/4A133.56 MayFGE4B134.26 MayFGE4C132.77 MaySTS4A135.87 MayFGE4B134.57 MayFGE4C133.3131.38 MayFGE4C133.3131.38 MayFGE4C131.59 MayFGE4C131.59 MayFGE4C131.59 MayFGE4C131.510 JuneVD4A85.284.311 JuneVD4A85.512 JuneFGE4C87.784.512 JuneFGE4C87.484.014 JuneVD4A85.513 JuneFGE4C87.484.014 JuneVD4A86.284.014 JuneVD4A86.284.014 JuneVD4A86.284.0					
26 April FGE 4B 142.9 142.4 26 April FGE 4C 141.2 140.9 6 May STSb/ 4A 133.5 6 May FGE 4B 134.2 6 May FGE 4C 132.7 7 May FGE 4C 135.8 7 May FGE 4B 134.5 7 May FGE 4B 133.3 131.3 8 May FGE 4C 133.3 131.3 8 May FGE 4C 133.3 131.3 8 May FGE 4C 131.5 8 May FGE 4C 131.5 9 May FGE 4C 131.5 9 May FGE 4C 131.5 10 June VD 4A 85.2 84.3 11 June VD 4A 85.5	•				
26 April FGE 4C 141.2 140.9 6 May STSb/ 4A 133.5 6 May FGE 4B 134.2 6 May FGE 4C 132.7 7 May STS 4A 135.8 7 May STS 4A 133.3 131.3 8 May FGE 4C 133.3 131.3 8 May STS 4A 133.8 7 May FGE 4B 135.7 7 May FGE 4C 131.5 8 May FGE 4C 131.5 8 May FGE 4C 131.5 9 May FGE 4C 131.5 9 May FGE 4C 131.5 10 June VD 4A 85.2 84.3 11 June FGE 4C 87.7 84.5 12 June FGE 4C 87.4 84.0					
6 May STSb/ 4A 133.5 6 May FGE 4B 134.2 6 May FGE 4C 132.7 7 May STS 4A 135.8 7 May FGE 4B 134.5 7 May FGE 4B 133.3 131.3 8 May FGE 4C 133.3 131.3 8 May STS 4A 133.8 8 May FGE 4C 131.5 8 May FGE 4C 131.5 9 May FGE 4C 131.5 9 May FGE 4C 131.5	•				
6 May FGE 4C 132.7 7 May STS 4A 135.8 7 May FGE 4B 134.5 7 May FGE 4C 133.3 131.3 8 May STS 4A 133.8 8 May FGE 4B 135.7 8 May FGE 4C 131.5 9 May FGE 4C 131.5 9 May FGE 4C 131.5 9 May FGE 4C 131.5 10 June VD 4A 85.2 84.3 11 June FGE 4C 87.7 84.5 12 June FGE 4C 86.6 85.6 13 June FGE 4C 86.6 85.6 13 June FGE 4C 87.4 84.0 14 June FGE 4C 87.4 84.0 14 June FGE 4C 87.0 79.7	•		46		
7 May STS 4A 135.8 7 May FGE 4B 134.5 7 May FGE 4C 133.3 131.3 8 May STS 4A 133.8 8 May STS 4A 133.8 8 May FGE 4B 135.7 8 May FGE 4C 131.5 9 May FGE 4C 131.5 9 May FGE 4C 131.5 10 June VD 4A 85.2 84.3 11 June VD 4A 85.2 84.3 11 June FGE 4C 87.7 84.5 12 June FGE 4C 86.6 85.6 13 June FGE 4C 86.6 85.6 13 June FGE 4C 87.4 84.0 14	6 May	FGE	4B	134.2	
7 May STS 4A 135.8 7 May FGE 4B 134.5 7 May FGE 4C 133.3 131.3 8 May STS 4A 133.8 8 May FGE 4B 135.7 8 May FGE 4C 131.5 8 May FGE 4C 131.5 9 May FGE 4C 131.5 9 May FGE 4C 131.5 9 May FGE 4C 131.5 10 June VD 4A 85.2 84.3 11 June VD 4A 85.2 84.3 11 June FGE 4C 87.7 84.5 12 June FGE 4C 86.6 85.6 13 June FGE 4C 87.4 84.0 14	6 May	FGE	4C	132.7	
7 May FGE 4C 133.3 131.3 8 May STS 4A 133.8 8 May FGE 4B 135.7 8 May FGE 4C 131.5 9 May FGE 4C 131.5 10 June VI 4A 60.0 58.8 11 June VI 4A 85.2 84.3 11 June FGE 4C 87.7 84.5 12 June FGE 4C 86.6 85.6 13 June FGE 4C 86.6 85.6 13 June FGE 4C 87.4 84.0 14 June VI 4A 86.2 84.0 14		STS	4A	135.8	
8 May STS 4A 133.8 8 May FGE 4B 135.7 8 May FGE 4C 131.5 9 May FGE 4C 131.5 9 May FGE 4C 131.5 10 June VD 4A 60.0 58.8 11 June VD 4A 85.2 84.3 11 June FGE 4C 87.7 84.5 12 June VD 4A 84.8 12 June FGE 4C 86.6 85.6 13 June FGE 4C 86.6 85.6 13 June FGE 4C 87.4 84.0 14 June VD 4A 86.2 84.0 14 June FGE 4C 89.0 79.7 15 June VD 4A 88.6	7 May	FGE	4B	134.5	
8 May FGE 4B 135.7 8 May FGE 4C 131.5 9 May FGE 4C 131.5 10 June VD 4A 60.0 58.8 11 June VD 4A 85.2 84.3 11 June FGE 4C 87.7 84.5 12 June VD 4A 84.8 12 June FGE 4C 86.6 85.6 13 June FGE 4C 86.4 85.6 13 June FGE 4C 87.4 84.0 14 June FGE 4C 87.4 84.0 14 June FGE 4C 89.0 79.7 15 June VD 4A 88.6	7 May	FGE	4C	133.3	131.3
8 May FGE 4C 131.5 9 May FGE 4C 131.5 10 June VD 4A 60.0 58.8 11 June VD 4A 85.2 84.3 11 June FGE 4C 87.7 84.5 12 June FGE 4C 86.6 85.6 13 June FGE 4C 86.6 85.6 13 June FGE 4C 86.4 85.6 13 June FGE 4C 87.4 84.0 14 June FGE 4C 87.4 84.0 14 June FGE 4C 87.9 79.7 15 June VD 4A 88.6	8 May	STS	4A	133.8	
9 May FGE 4C 131.5 10 June VD 4A 60.0 58.9 11 June VD 4A 85.2 84.3 11 June FGE 4C 87.7 84.5 12 June FGE 4C 86.6 85.6 13 June FGE 4C 86.6 85.6 13 June FGE 4C 87.4 84.0 14 June FGE 4C 87.0 79.7 15 June VD 4A 88.6	8 May	FGE	4B	135.7	
10JuneVI4A60.058.811JuneVI4A85.284.311JuneFGE4C87.784.512JuneVI4A84.812JuneFGE4C86.685.613JuneFGE4C87.484.014JuneVI4A86.284.014JuneFGE4C87.079.715JuneVI4A88.6	8 May	FGE	4C	131.5	
11 JuneVD4A85.284.311 JuneFGE4C87.784.512 JuneVD4A84.812 JuneFGE4C86.685.613 JuneVD4A85.513 JuneFGE4C87.484.014 JuneVD4A86.284.014 JuneFGE4C89.079.715 JuneVD4A88.6	9 May	FGE	4C	131.5	
11 JuneFGE4C87.784.512 JuneVD4A84.812 JuneFGE4C86.685.613 JuneVD4A85.513 JuneFGE4C87.484.014 JuneVD4A86.284.014 JuneFGE4C89.079.715 JuneVD4A88.6	10 June	VD	46	60.0	58.8
12 JuneVD4A84.812 JuneFGE4C86.685.613 JuneVD4A85.513 JuneFGE4C87.484.014 JuneVD4A86.284.014 JuneFGE4C89.079.715 JuneVD4A88.6	11 June	VD	4A	85.2	84.3
12 JuneFGE4C86.685.613 JuneVD4A85.513 JuneFGE4C87.484.014 JuneVD4A86.284.014 JuneFGE4C89.079.715 JuneVD4A88.6			4C		84.5
12 JuneFGE4C86.685.613 JuneVD4A85.513 JuneFGE4C87.484.014 JuneVD4A86.284.014 JuneFGE4C89.079.715 JuneVD4A88.6	12 June	VD	4 0	84.8	
13 JuneFGE4C87.484.014 JuneVI4A86.284.014 JuneFGE4C89.079.715 JuneVI4A88.6			4C	86.6	85.6
14 JuneVI4A86.284.014 JuneFGE4C89.079.715 JuneVI4A88.6	13 June	VD	4A	85.5	
14 JuneFGE4C89.079.715 JuneVD4A88.6	13 June	FGE	4C	87.4	84.0
15 June VD 4A 88.6	14 June	VD	46	86.2	84.0
	14 June			89.0	
15 June FGE 4C 89.2 86.1					
	15 June	FGE	4C	89.2	86.1

a/ Yearling chinook salmon 15 April through 9 May, subyearling chinook salmon 10 through 15 June.

b/ STS=Submersible traveling screen only--no fyke net frame attached.

APPENDIX B

Analysis of variance based upon the Latin square cross-over design (Cochran and Cox 1957). An example using a pooled error term to provide a better test of the treatment effect. Fish guiding efficiency (FGE) data from the operating gate evaluation study conducted at Lower Monumental Dam from 21 to 26 April 1986 were used in the example. I. Latin square crossover analysis of variance.

Data set-up, FGE% for yearling chinook salmon.

	Test	Iª/		Test	II		Test	III		
<u>Gate_slot</u>		C2		C3						
B	68.6+	62.3-	ri	78.0+	59.2-	r3	76.1+	52.2-	r 5	396.4
C	60.2-	65.6+	r2	66.4-	75.5+	r 4	61.0-	74.8+	r6	403.5
Test totals 256.7(T1) 279.1(T2) 264.1(T3) 799.9(GT)										

Treatment totals:

Treatment 1 = raised gate FGE (+'s)

= 68.6+65.6+78.0+75.5+76.1+74.8= 438.6

Treatment 2 = standard gate FGE (-'s)

= 60.2+62.3+66.4+59.2+61.0+52.2= 361.3

<u>a</u>/ A test is defined as a set of paired days where both rows (slots) have a balanced set of treatment conditions.

b/ Individual columns represent different sampling dates.

ANDVA calculations

A. Sums of squares for squares (tests) (SSS) = SST/a - GT^2/N

where:

a = number of observations per test, i.e., 4

N = number of observations in total test series, i.e., 12

SST = sum of squares for individual square totals $= T1^{2} + T2^{2} + T3^{2} = 256.7^{2} + 279.1^{2} + 264.1^{2}$ = 213540.5GT = Grand total all observations = 799.9 therefore: $SSS = (213540.5/4) - (799.9^2)/12 = 53385.1 - 53320$ = 65.1 B. Column sum of squares (CSS) = $(C1^2+C2^2+C3^2+...Cn^2)/b$ - (SST/a) where: b = number of rows (slots), i.e., 2 therefore: $CSS = [(68.6+60.2)^{2}+(62.3+65.6)^{2}+(78.0+66.4)^{3}+\dots(52.2+74.8)^{2}/2 - 53385.1$ = 49.2 C. Row sum of squares (RSS) = $(r1^2 + r2^2 + r3^2 + ... r6^2)/c$ - (SST/a) where: c = number of observations totaled per row per square, i.e., 2 therefore: RSS = $((68.6+62.3)^2 + (60.2+65.6)^2 + (78.0+59.2)^2 + (61.0+74.8)^2/2) - 53385.1$ = 26.1 D. Treatment sum of squares (TSS) = (sum treatment 1 - sum treatment 2) 2 /N $= (438.6 - 361.3)^2 / 12$ = 497.9E. Total sum of squares (TDSS) = $((68.6)^2 + (60.2)^2 + (62.3)^2 + \dots + (74.8)^2) - GT^2/N$ = 54044.6 - 53320.0 = 724.6

F. Error sum of squares (ESS) (by subtraction)

= TOSS - (SSS+CSS+RSS+TSS)

= 86.2

Degrees of freedom (df)

Formula	df	
No. of tests - 1	2	
No. of dates - No. of te	sts 3	
No. of squares	3	
Total treatments - 1	1	
No. of squares - 1	2	
Total camples - 1	11	
	No. of tests - 1 No. of dates - No. of te No. of squares Total treatments - 1	

ANOVA table

Source	df	Sum	Mean	F
		of_squares	squares	calculated
Squares (tests), SSS	2	65.1	32.6	0.76ns ^{⊑/}
Columns within squares, CSS	3	49.2	13.41	0.38ns
Rows within squares, RSS	3	26.1	8.7	0.20ns
Treatments, TSS	1	497.9	497.9-	11.55 * * ^{₫/}
Error, ESS	. 2	86.2	43.1	18.5 (2 tailed) 0.05
Total	11	724.6		8.53 (2 tailed) 0.10
c/ ne = non-significant	(P)0 (05) variance co	ntribution	

c/ns = non-significant (P>0.05) variance contribution.

d/ ****** = significant (P $\langle 0.05$) variance contribution, 1-tailed test.

II. A shortcut method may be used to analyze cross-over studies involving two treatments (Dr. Lyle Calvin, COE consulting statistician, pers. comm.). Based on Student's t-test, this method of analysis is equivalent to the

longer F-test method of treatment evaluation. The shortcut method also serves as a mathematical check for the F-test method--the t-calculated value squared equals the treatment F-calculated value.

Data set-up, FGE% for yearling chinook salmon.

	<u>Slot</u> .	<u>4</u> B	<u>Slot_4C</u>			
Gate position	+ 20 ft.	Standard	+ 20 ft.	Standard		
Symbol ^{g/}	Y1B	Y2B	Y1C	Y2C		
21-22 April	68.6	62.3	65.6	60.2		
23-24 April	78.0	59.2	75.5	66.4		
25-26 April	76.1	52.2	74.8	61.0		

<u>e</u>/ The treatment effect for each pair of days (test) can be measured by the statistic, T = 1/2(Y1B+Y1C-Y2B-Y2C).

where:

Y1B = FGE for treatment 1 in unit 4B Y2B = FGE for treatment 2 in unit 4B Y1C = FGE for treatment 1 in unit 4C Y2C = FGE for treatment 2 in unit 4C

therefore:

Test 1, T = 1/2(68.6+65.6-62.3-60.2) = 5.85Test 2, T = 1/2(78.0+75.5-59.2-66.4) = 13.95Test 3, T = 1/2(76.1+74.8-52.2-61.0) = 18.85

The mean value of the T's, $\bar{\tau} = \mathbf{X}T/n = 12.88$ is the estimated treatment effect (the mean difference between FGE for treatment 1 and treatment 2). A statistical test of the hypothesis of no treatment effect is given by the <u>t</u> test: $\underline{t} = \bar{\tau}/\sqrt{s^2/n}$, where s^2 = variance among the the <u>n</u> T values (in the example above, $s^2 = 43.103$, n = 3 and $\underline{t} = 12.88/\sqrt{43.103/3} = 3.398$). There are n-1 (2) degrees of freedom for this test. The <u>t</u> value squared (3.398^2) = 11.55, which agrees with the treatment effect F-calculated value above.

III Pooling error terms.

The hypothesis tested above had a 1-tailed alternative, i.e., H_a: raised operating gate significantly <u>increases</u> guidance. The 1-tailed alternative hypothesis is justified from hydraulic model studies and from the expected direction of the change based on previous studies of the effect of the raised gate on FGE. Obtaining only 2 df from 6 days of testing seems somewhat conservative and makes it difficult to demonstrate a significant treatment effect. By pooling error terms from several tests to obtain an estimate of the error term with more df, a better test can be made of the treatment effect.

An example of pooling using error terms from studies of the effects of operating gate position on FGE (cross-over designs) at Lower Granite^{f/} (1985), Little Goose^{g/} (1986) and Lower Monumental (1986) Dams is provided below:

		r_term	Treat	ment ^{h/}	Operating gate		
Dam	dł		Mean	_E_calc	ulated_	test conditions	
			sguares_	- 60181081			
Granite	1	8.000	8.000	0.18ns	0.06ns	+20 ft. vs +62 ft.	
Granite	1	6.613	6.613	0.10ns	0.03ns	+20 ft. vs +62 ft.	
Granite	1	31.205	31.205	1.48ns	1.98ns	+62 ft. vs standard	
Granite	1	6.845	6.845	29.22ns	8.64**	+62 ft. vs standard	
Monumental	2	86.200	43.103	11.55ns	21.44***	+20 ft. vs standard	
Goose	5	116.590	23.318	44.26***	44.55***	+20 ft. vs standard	

Overall 11 255.453 23.223

Pooled error = (total sum of squares)/df = 255.453/11 = 23.223, which has

11 df.

f/ Swan et al. 1986, Appendix Table B1.

g/ W. Norman, NMFS, Pasco, WA, pers. comm.

<u>h</u>/ Significance levels testing a 2-tailed hypothesis of no difference: ns = not significant (P>0.05), ****** = P ≤ 0.05 , ******* = P ≤ 0.001

Fooling is generally justified if there is less than a 10 fold difference in the range of the sample error mean squares (Dr. Lyle Calvin, COE consulting statistician, pers. comm.). In the above example there was a 6.5 fold difference in the sample mean squares--within the guideline.

Consequently, if we reevaluate the Lower Monumental data using the pooled error term, i.e., treatment mean square/pooled error = 497.94/23.223= 21.44 (column F-pooled above). When this F value is compared to the tabular value using 1 and 11 df, the observed increase in FGE obtained by raising the operating gate is highly significant, even with a 2-tailed test (P<0.001).