
 

MANAGING UNCERTAINTY IN HABITAT RECOVERY 
PLANNING 

The salmon ecosystem recovery planning approach proposed in this guidance document 
requires a complex series of decisions about habitat actions despite large amounts of uncertainty 
in the available information from many sources.  This uncertainty can result in risks to habitats 
and populations from inappropriate management advice (Fogarty et al. 1996).  Past failures of 
management plans to prevent population declines and collapse are due in part to the failure to 
recognize uncertainty in available information and a lack of procedures for including uncertainty 
in the decision-making process (Wade 2001).  Inevitably, decisions will be based on a tapestry of 
models, estimates, expert opinions, myths, predictions, and data.  By identifying, quantifying, 
and acknowledging the uncertainty in information used for recovery planning, we can increase 
the likelihood that recovery plans will be successful.  The benefits of explicitly accounting for 
uncertainty include capturing all the available information regarding uncertain factors, providing 
the full range of possible outcomes and the probability of observing each, and identifying the key 
drivers of overall uncertainty in model projections (Mishra 2001).  In this section we provide 
guidance via quantitative and qualitative examples for managing uncertainties inherent in habitat 
recovery planning. 

A brief example illustrates how identifying and quantifying uncertainty can help a 
resource manager make explicit trade-offs between potential positive outcomes and acceptable 
risks.  In choosing between two possible culverts for restoring fish passage, one might be given 
information that removal of culvert A is predicted to increase fish capacity by 120 fish while 
removal of culvert B is predicted to increase fish capacity by 100 fish.  With no estimates of 
uncertainty, the manager would choose culvert A because it has the highest expected increase in 
fish capacity.  However, more complete information might indicate that replacement of culvert A 
would open habitat that was less certain to be occupied (120 ± 70), while replacement of culvert 
B would open wetland habitat with a high degree of certainty (100 ± 10) to be quickly colonized.  
With the additional information, decision makers could then explicitly choose between a higher 
but less likely increase in fish capacity and a lower but more certain increase in fish capacity.  In 
this example, neither action is likely to cause harm (a negative change in fish capacity).  In other 
situations, actions with a high potential payoff may also contain some risk of being detrimental 
to fish, for example, when deciding whether to use chemical herbicides to remove nonnative 
vegetation from riparian areas. Without an estimate of the magnitude of uncertainty in the 
information on which decisions must be made, decision makers cannot make informed decisions. 

The importance of clearly communicating uncertainty has been repeatedly emphasized in 
the fisheries literature (Francis and Shotton 1997): 

• “Understanding the risk or uncertainty associated with choices could help fisheries 
managers select management strategies, decide which types of risks and uncertainty 
inhibit the effectiveness of management techniques, and finally, recognize which types of 
uncertainty must inevitably remain” (Peterson and Smith 1982). 

• “Point estimates should be accompanied by variance estimates” (USCTC 1997). 
• “The managers’ task may be made easier if uncertainty in a fishery assessment were 

expressed” (Francis 1992). 
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• “Scientific advice to fishery managers needs to be expressed in probabilistic terms to 
convey the uncertainty about the consequences of alternative harvesting policies” 
(McAllister et al. 1994). 

• “Clearly, when management decisions are to be based on quantitative estimates from 
fishery assessment models, it is desirable that the uncertainty be quantified and used to 
calculate the probability of achieving the desired target and/or risk of incurring 
undesirable events” (Caddy and Mahon 1995). 

Such reporting of uncertainty in data and predictions has become common in harvest 
management (Rosenberg and Restrepo 1994).  However, uncertainty is not often incorporated 
into salmon habitat recovery planning despite broad consensus that considering uncertainty is 
important and necessary in the conservation and management of species (Mangel et al. 1996, 
Flaaten et al. 1998, Akcakaya et al. 2000, Ralls and Taylor 2000, Wade 2001). 

In this section, we first describe five types of uncertainty embedded in predictions of 
habitat capacity. We follow this with two examples of uncertainty in habitat management issues 
related to recovery planning.  In each example, we describe how management decisions might be 
improved by acknowledging, quantifying, and reducing uncertainty in the decision-making 
process.  The first example describes qualitative strategies for reducing uncertainties regarding 
chemical contaminants and making structured decisions in the face of limited empirical data. The 
second example describes the use of decision tables for making decisions that incorporate 
uncertainty. The final subsection describes strategies for making decisions when empirical data 
are lacking. Here we distinguish between variability, which is characterized by differences in a 
variable’s value over time, space, or populations, and uncertainty, which is lack of knowledge 
about a true and constant value of a quantity (Morgan et al. 1990, Cullen and Frey 1999).  Our 
discussion of methods for reducing uncertainty is purposefully simplified throughout, but 
references are provided for each example so that interested readers can locate more detailed 
information.  By omitting site-specific and mathematical details, we intend to express a general 
framework for incorporating uncertainty into decisions. 

Types of Uncertainty 

Precise and accurate predictions are a fundamental goal in the aquatic sciences.  
Improved management of aquatic resources will result from a predictive science that can forecast 
the consequences, costs, and benefits of management actions (Pace 2001).  A prediction might be 
a value (e.g., habitat capacity estimate, extinction risk, or survival rate) or a relationship between 
a habitat action and a biological response (e.g., effects of high flows on egg survival, effects of a 
particular restoration technique on fish survival, or projected population trajectories under 
different climate scenarios).  Population viability and habitat goals (Phase I recovery planning) 
as well as prioritized project lists and watershed plans (Phase II recovery planning) must be 
developed from these types of predicted values and relationships.  Informed plans and decisions 
will be based on both the predictions and the uncertainty surrounding them. 

The five types of uncertainty found in predictions of habitat capacity are predictive 
uncertainty, parameter uncertainty, model uncertainty, measurement uncertainty, and natural 
stochastic variation (Table 13).  Evaluating the relative magnitudes of the five types of  
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Table 13.  Tools and methods for quantifying and reducing uncertainty. 
 

Class of uncertainty Brief definition Habitat example Method for quantifying Possibility for reducing 

Prediction uncertainty Difference between 
modeled response and true 
response. 

Uncertainty of predicting 
habitat capacity of a given 
watershed after instream 
restoration. 

Leave-one-out estimates of 
prediction error rates. 
Simulation studies 
comparing conditions 
where model was built to 
those in which it is being 
applied. 

Collect data for 
conditions in which 
predictions are required. 
Do not extrapolate 
beyond conditions under 
which model was 
developed. 

Parameter uncertainty Difference between true 
parameter (such as an 
average or a regression 
coefficient) and parameter 
as estimated from the data. 

Uncertainty of parameters 
describing change in 
capacity as a function of 
changes in watershed 
condition. 

Statistical theory for model 
coefficients derived from 
data. 
Sensitivity analysis for 
model coefficients 
estimated from other 
sources. 

Collect more data or 
more accurate data. 
Collect data over a wider 
variety of conditions. 

Model uncertainty Difference between natural 
system and the 
mathematical equation 
used to describe it. 
Includes model form and 
set of predictors. 

Uncertainty in relationship 
between habitat conditions 
and fish capacity. 
Uncertainty in which 
habitat descriptors are best 
predictors of fish capacity. 

Statistical descriptions of 
model fit: Akaike’s 
information criteria (AIC), 
Bayesian information 
criteria (BIC), likelihood 
ratios, F-statistics. 

Consider wide variety of 
models. 
Conduct sensitivity 
analyses. 

Measurement uncertainty Difference between true 
value and the recorded 
value. 

Uncertainty in 
measurements of data used 
to build the predictive 
model, i.e., fish or redd 
density under differing 
habitat conditions. 

Test accuracy of 
measurement technique 
against standard method or 
known values. 

Improve measurement 
techniques. 
Increase number of 
replicates. 
Calibrate biased 
measurement techniques. 

Natural stochastic 
variation (process 
uncertainty) 

Inherent random 
variability. 

Natural fluctuations in 
population size, habitat 
selection, or habitat 
conditions. 

Variance of the observed 
data. 
Variance of the observed 
data for different sets of 
conditions. 

Collect more replicates 
for conditions of interest. 
Stratify data collection. 
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uncertainty embedded in a particular prediction is valuable because it tells us where to be 
skeptical.  More formally, we may pursue value of information (VOI) analysis to establish which 
additional information is most likely to improve our decision-making position (Raiffa and 
Schlaifer 1961, Raiffa 1997).  VOI techniques seek to identify situations in which the cost of 
reducing uncertainty is outweighed by the benefit of the reduction. In some cases, the predictive 
uncertainty turns out prohibitively large and the available empirical data therefore provides little 
guidance for decision making.  In such cases, other decision-making processes that do not 
require quantitative predictions can be used (see Using Decision Rules When Empirical Data Are 
Inadequate subsection, page 86). 

To a great degree, the five types of uncertainty are nested: prediction uncertainty includes 
parameter and model uncertainty, which each includes measurement error and natural variability.  
Here we start with prediction uncertainty, the broadest form of uncertainty, and work down to 
the underlying natural variation.  We provide examples of how each type of uncertainty arises, 
how it might be quantified, and how it might be reduced (Table 13).  We conclude each 
subsection with a summary of how decision making can be improved by quantifying and 
acknowledging each class of uncertainty.  A series of questions to ask of any prediction is in 
Table 14. 

Prediction Uncertainty 

Predictions include uncertainty from natural stochastic variation of the system being 
modeled, measurement uncertainty of the data used to build the model, uncertainty surrounding 
the form of the model, and parameter uncertainty (components addressed in the following 
subsections).  In addition, predictions can include uncertainty that results from applying a model 
to a new situation.  For example, a capacity estimate for Watershed X might predict future 
capacity based on current and past data for the same watershed or an estimate of current capacity 
for Watershed X might be based on data collected in other watersheds.  Both cases involve 
extrapolating from conditions under which data were collected to new conditions.  Uncertainty 
associated with these or similar extrapolations, say from the laboratory to the field, is difficult or 
impossible to quantify but must be considered and described. 

Prediction uncertainty can be evaluated by ground-truthing (i.e., field measurement of 
specific attributes), prediction confidence intervals, and cross-validation simulation studies.  
Ground-truthing will help quantify the accuracy and precision of past predictions about current 
conditions, but can only suggest how well the model may perform under future conditions.  
Prediction confidence intervals can be computed in situations for which the manager does not 
need to extrapolate beyond the original data (Zar 1984).  Where there is more than one predictor 
variable, caution should be used in defining the joint sample space beyond which one is 
extrapolating.  In cross-validation simulations, the model is constructed and parameterized using 
a subset of the data (Stone 1974).  The model is then assessed by how well it predicts that subset 
of data excluded from model construction.  Cross-validation simulations do not include 
uncertainty associated with extrapolating from measured to unmeasured conditions.  To assess 
how well a model may predict unmeasured conditions requires careful consideration of those 
model components that may be sensitive to expected differences between measured and 
unmeasured conditions (i.e., current vs. future conditions).  Models can be compared in their  
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Table 14.  Questions to guide the evaluation of predictions. 
 

Prediction uncertainty 
How similar are the conditions under which the original information was gathered to those for which 
the prediction is being made?  How sensitive is the model (data, mechanism, and parameter 
estimates) to site-specific details? 

Parameter uncertainty 
Is the prediction sensitive to small changes in parameter estimates?  If so, how precise are the 
estimates of those parameters? 

Model uncertainty 
What are the assumptions on which the prediction is based?  How sensitive is the prediction to these 
assumptions? 

Measurement uncertainty 
Could any of the information on which the prediction is based be biased?  How precise and how 
accurate are the data? 

Natural stochastic variation (process uncertainty) 
Can measurements be stratified across conditions to reduce the effects of natural variability? 
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relative sensitivity to changing conditions.  Models that rely on predictors only correlated with 
the causal factors are particularly likely to have high levels of prediction uncertainty, because in 
new situations the correlations on which the model is based may no longer be coincident with the 
causal mechanism. 

Parameter Uncertainty 

Model parameters are necessarily estimated with uncertainty.  A statement of the 
uncertainty of these parameter estimates is critical for making informed management decisions.  
Parameters that have biological meaning provide a context for interpreting the associated 
uncertainty.  For example, imagine one had created a regression model to estimate smolt density 
as a function of the number of pieces of wood in the stream.  The model would include a 
parameter, for example 12.3, that estimated the increase in smolt density for each piece of wood.  
The conclusion from such a model without parameter uncertainty estimates might be to embark 
on a widespread wood placement plan.  However, if the parameter estimate had been more 
completely expressed as 12.3 ± 15.1, we might diversify the types of restoration actions used or 
choose a different restoration action with a smaller but more certain fish response and little or no 
risk of an adverse affect.  For statistical models, parameter estimates are developed from the data 
and the uncertainty associated with these estimates is relatively easy to compute.  For 
mechanistic models, parameters may be estimated from data, from similar models of other 
phenomena, or by expert opinion.  When parameters are not estimated from data, the uncertainty 
surrounding them can be difficult or impossible to quantify.  If estimates from such models are 
used, the potential uncertainties should be described; the direction and magnitude of the potential 
errors can often be estimated qualitatively. 

Sensitivity analyses can be used to estimate the effect of parameter uncertainty.  Nominal 
range or local sensitivity analysis computes the effect on model outputs of systematically varying 
each parameter in the model across its range of plausible values while holding the other inputs at 
their nominal values.  Where small changes in parameter values lead to large changes in model 
predictions, the uncertainty of those parameters should be carefully evaluated.  Models that are 
extremely sensitive to changes in parameter estimates and have highly uncertain estimates of 
those parameters will yield predictions with large uncertainty.  Even where models produce 
highly uncertain predictions, they may be useful for quantifying the uncertainty in predictions 
and determining the type and quality of information that would be required to produce 
predictions with acceptable levels of certainty.  The sensitivity analysis tells the managers that 
predictions are sensitive to particular conditions and that they will either have to increase 
precision of parameter estimates or ensure that management plans are robust to expected 
uncertainty.  Increased precision of parameter estimates can be achieved by collecting more data, 
data over a wider range of values, or better data (data with less measurement uncertainty). 

Model Uncertainty 

Nearly all estimates and predictions used in management are explicitly or implicitly 
based on an underlying model.  Uncertainty exists about both the model form (e.g., a linear 
relationship vs. a Ricker curve) and which predictor variables to include.  Model uncertainty 
results from an incomplete understanding and a simplified representation of ecological systems 
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and functions (Fogarty et al. 1996).  For example, we might have a model that predicts habitat 
capacity as a linear function of several habitat parameters: wood density, pool density, gradient, 
adjacent land use, and water temperature.  The default assumption may be to use a simple linear 
regression model.  However, we may be uncertain whether the effects of these five habitat 
descriptors are additive or have a linear relationship to habitat capacity, and we may also be 
unsure if these five habitat descriptors are the best set of predictors or if an alternate set might 
perform just as well.  Many statistical tools (adjusted R-squared, Akaike’s information criteria or 
AIC, Bayesian information criteria or BIC, F-tests, likelihood ratio tests, cross-validation 
metrics) are available for choosing between models (Burnham and Anderson 1998).  In general 
these techniques balance the degree to which the model fits or predicts the data with the 
complexity of the model, usually expressed as the number of parameters. 

Models that fail to describe the ecological process accurately or to include an important 
predictor can have enormous management implications.  Model predictions can be of the wrong 
magnitude or even the wrong direction.  Resource managers and ecologists have often erred 
significantly by failing to consider model uncertainty.  For example, the prevailing model of 
habitat effects on fish survival once assumed that fish survival decreases with increasing 
amounts of instream wood, and as a result, large amounts of wood were removed from streams 
and rivers (Maser et al. 1988). Thus habitat degradation in the Pacific Northwest can in part be 
attributed to a failure to assess the possibility that this model was incorrect (Beechie et al. 1996). 

Model uncertainty is very difficult to quantify because there are an infinite number of 
possible models; none is exactly correct.  Simulation studies generate data using a particular 
model, then ask questions about the behavior of those data (Morgan et al. 1990).  They can 
quantify the degree to which the structure of the model influences the model’s predictions.  
Averaging predictions from a suite of models can reduce the impact of model uncertainty on 
management predictions (Burnham and Anderson 1998, Cullen and Frey 1999).  Beyond these 
tools, reducing model uncertainty is extremely difficult.  Schnute and Richards (2001) suggest 
that model uncertainty be managed by keeping an open mind, identifying all assumptions, and 
testing those assumptions continuously. 

Measurement Uncertainty 

Measurement uncertainty or observation error is simply the difference between a true 
value and our recorded observation of it.  It results from measurement, sampling, and data 
processing errors (Francis and Shotton 1997).  All observations carry some degree of 
measurement uncertainty.  This uncertainty may be large and problematic or small and of 
negligible consequence.  Some phenomena such as the survival of fish in different habitats are 
inherently difficult to measure.  Consequently, the variables associated with these phenomena 
have a high degree of measurement uncertainty.  Other phenomena such as stream discharge can 
be measured quite accurately.  Uncertainty resulting from sampling error occurs when the 
measured samples are not representative of the population for which inference is being made.  
The incorporation of measurement and sampling errors can obscure or create relationships 
between variables (Ludwig and Walters 1981, Walters and Ludwig 1981).  Measurement error as 
defined here can also occur during data processing and storage. 
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Measurement uncertainty is directly related to both the accuracy and the precision of the 
measurement technique.  Accuracy in a measurement technique, the inverse of uncertainty, 
describes the average distance between the measured value and the truth.  The precision of a 
measurement describes the variability around that average.  Therefore, a measurement tool can 
be highly precise (low variance across repeated measurements) and yet inaccurate (the average 
of repeated measurements is far from the true value).  In other words, it is quite possible for a 
measurement to be characterized by little variability but a large degree of uncertainty.  While 
there have been many attempts to estimate measurement uncertainty in, for example, habitat 
surveys (Pleus 1995, Roper and Scarnecchia 1995, Poole et al. 1997) or redd surveys (Jones et al. 
1998, Dunham et al. 2001), the known uncertainty in these types of data is rarely included in the 
uncertainty of predictions from models that are based on these types of data. 

Measurement uncertainty can result in systematic error or bias. Bias is a directional error 
that results from measurement using a systematically inaccurate tool.  Biased or potentially 
biased measurements might include subjective assessments or incomplete records.  A less visible 
form of bias occurs when a measurement technique tends to overestimate in certain conditions 
and underestimate in other conditions. A simple example is helicopter redd surveys.  Redds are 
easier to identify where there are fewer trees; therefore the accuracy or uncertainty of the 
measurement may depend on whether there are riparian buffers.  If the bias is not corrected, the 
data might erroneously predict increases in redd density with removal of riparian trees. 

Measurement uncertainty can be reduced but not eliminated.  Replication is the best way 
to reduce the uncertainty, though it will not remove bias resulting from the use of inaccurate 
measurement tools.  Bias can be corrected using unbiased measurements.  Measurement 
uncertainty in expert opinion or subjective assessments can be very difficult to assess because no 
actual data exists.  Although it may be possible to determine how well experts agree with one 
another (precision), it is impossible to assess or quantify accuracy when there are no accurately 
measured data available for comparison.  In such cases, sensitivity analyses (as just described in 
the Parameter Uncertainty subsection) can provide an assessment of the degree to which small 
amounts of measurement uncertainty or bias in the input data might affect predictions (Morgan et 
al. 1990).  Measurement uncertainty may also be quantified using repeated measurements or by 
computer-intensive techniques such as resampling or bootstrap methods (Efron and Tibshirani 
1991, 1993).  By quantifying measurement uncertainty, the value of collecting more data with 
the same measurement or sampling technique versus a more expensive technique can be 
weighed. 

Natural Stochastic Variation 

Natural stochastic variation is the inherent random variability in ecological systems, such 
as temperature or population fluctuations.  It also incorporates the underlying stochastic nature of 
population dynamics (Rosenberg and Restrepo 1994).  It contributes to our inability to make 
precise predictions.  Increased amounts of natural stochastic variation, often called process 
uncertainty, require increased numbers of observations (either more sites or more replications or 
both) to make estimates of a given precision (Shea and Mangel 2001).  Very high levels of 
natural variation can mean that estimates of the required precision are simply impossible to 
obtain (Korman and Higgins 1997). 
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Identifying and quantifying natural stochastic variation helps us to distinguish between 
situations in which small amounts of additional data should dramatically increase our ability to 
make good decisions and situations in which additional data are unlikely to provide significant 
increases in the accuracy of predictions.  This is the heart of VOI analysis discussed earlier.  In 
some cases, stratifying the data or redefining the question can reduce the effects of natural 
stochastic variation.  For example, we might make separate estimates of in-river survival for wet 
versus dry years.  Resource managers would then be able to make more informed decisions about 
the value of habitat restoration plans that potentially have different effects in wet versus dry 
years.  Because stochastic variation is a natural phenomenon, it cannot be reduced to increase the 
precision of our predictions.  Where it can no longer be reduced by stratification, quantifying and 
acknowledging stochastic variation is the best way to manage it. 

In summary, an informed management decision requires information about the 
uncertainty of the predictions on which that decision will be based (Pace 2001, Regan et al. 
2002).  Evaluating the uncertainty in each prediction requires the dissection of that uncertainty 
into its classes.  Each class as well as methods for quantifying and reducing uncertainty are 
summarized in Table 13.  By asking the questions in Table 14, we can identify critical 
knowledge gaps, improve predictions, and reduce the chances of making poor or uninformed 
decisions because of poor predictions. 

Example 1: Creating a Prioritized List of Restoration Projects 

Once we have a series of predictions with their associated uncertainties, we must 
combine them into an action plan (see Prioritizing Potential Restoration Actions within 
Watersheds section, page 60).  In this example, we demonstrate one method of setting up a 
decision table for using predictions and their confidence intervals to develop a project list for a 
habitat recovery plan.  Developing a project list is difficult because of uncertainty about how fish 
may respond to changes in the environment.  For instance, we may have a list of potential 
actions, each of which is expected to increase pool habitat.  There are uncertainties in estimating 
the increase in pool area and about the density of fish that can be supported by a given amount of 
pool habitat.  By explicitly including the uncertainty in a decision table, we can identify the 
actions with the highest expected final fish density and determine the potential value of reducing 
the uncertainty.  Analogous examples have been worked out in the harvest literature (Hilborn 
and Walters 1992). 

The first task in setting up a decision table is to describe the “alternative states of nature” 
and ascribe probabilities to these states.  In this example, the alternative states of nature are the 
alternative hypotheses about how many juveniles are supported by a given area of pool habitat.  
Table 15 presents sample hypotheses and associated probabilities.  The probabilities associated 
with each hypothesis may be generated in a number of ways.  One method that can combine 
multiple types of information is meta-analysis, which pulls together information from multiple 
sources (Liermann and Hilborn 1997, Myers et al. 2001).  Other Bayesian analysis techniques 
can also be used to combine disparate sources of information.  A trademark of Bayesian analysis 
is the assignment of probabilities to alternative states of nature (Wade 2000). Strengths and 
weaknesses of the Bayesian approach are described by Dixon and Ellison (1996).  If only limited  
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Table 15.  Input information and results of decision analysis for prioritizing restoration actions.  Example 
alternative hypotheses about the states of nature (i.e., density of fish per m2 of pool habitat) and 
the relative probability that the hypothesis is true are in the first two rows.  All probabilities must 
sum to one.  Expected outcomes for potential habitat actions (total fish) as a function of each 
hypothesized fish density are displayed below the hypothesis probabilities.  Overall expected 
outcomes (increase in total number of fish) of each potential action, given all potential states of 
nature, are in last column. 

 
Hypothesized fish 
density per pool 

 
5 

 
10 

 
15 

 
20 

Hypothesis probability 0.1 0.3 0.5 0.1 

Overall 
expected 
outcome 

Remove 
culvert A 

2,744 4,892 5,248 5,786 4,945 

Remove 
culvert B 

2,844 3,400 3,858 6,457 3,879 

Remove 
riprap 

2,012 4,172 4,260 4,340 4,017 

Potential 
action 

Add wood 1,568 3,410 5,963 6,230 4,784 
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or ambiguous data are available, expert opinion can be solicited to assign probabilities to the 
various hypotheses.  Numerous texts describe the complexity of selecting a group of experts, 
combining their disparate judgments, and other challenges of this approach (Morgan et al. 1990, 
Cooke 1991).  As noted earlier in the section, knowing if expert opinion is correct is impossible 
precisely because we use it in situations for which we have no data.  If expert opinion is used to 
assign probabilities to a set of hypotheses, then the prioritized list that emerges from the 
decision-analysis process will be a formalization of those opinions. 

The next step in setting up a decision table is to associate an outcome with each potential 
action, assuming each of the alternative hypotheses about the state of nature is true.  For 
example, if the hypothesis that pools can support five juvenile fish per m2 is true, then the 
number of fish expected from the removal of culvert A might be 2,744 fish.  In this example the 
outcome is number of fish, but other appropriate outcome units such as fish per dollar may be of 
interest.  This outcome is calculated based on an assessment of the number of pools that would 
be made available after removal of the culvert.  More realistic and detailed decision tables might 
include additional information such as the number of riffles, types of pools, depths of pools, or 
quality of expected pool habitat.  Table 15 shows potential outcomes in total fish for a number of 
management actions as a function of fish density in pools. 

Finally, we calculate the final expected outcome of each potential action, given the 
probabilities of the states of nature (Table 15).  The expected outcome of each action is 
calculated by summing the expected outcome for each state of nature multiplied by the 
probability that the state of nature is true.  For example, the expected outcome for removal of 
culvert A is (2744 × 0.1) + (4892 × 0.3) + (5248 × 0.5) + (5786 × 0.1) = 4945.  Table 15 shows 
the expected outcome for each of the four potential actions.  The largest expected increase in 
total number of fish is associated with removal of culvert A. 

This is an extremely simple example.  Hypotheses about the states of nature will often 
involve more than a single dimension (e.g., more than pool density).  Many types of information 
can be included in the analysis, but there will often be only one or two critical uncertainties that 
drive a decision.  Decision tables provide a structured method for including and communicating 
uncertainties and can easily be constructed for many of the examples in this document.  For 
example, the methods described in the Prioritizing Potential Restoration Actions within 
Watersheds section, page 60, could be modified to include uncertainty about fish response, 
restoration costs, or habitat quality by using the decision table methodology described here.  
Another tool for making decisions is a logic tree, which models the impact of uncertainties in 
states of nature and in the occurrence of future conditions on possible outcomes (Kessler and 
McGuire 1999).  Logic trees are particularly useful when only subjective probabilities about the 
states of nature exist. 

Example 2: Water Quality and Habitat Recovery Planning 

Uncertainty in habitat planning can result from the omission of a key habitat variable, 
such as water quality.  The quantity and quality of salmon habitat are both important 
determinants of salmon population viability.  Stream temperatures, sedimentation, and water 
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pollution are all examples of measures of habitat quality.  However, empirical data for the 
various forms of water pollution are rarely incorporated into habitat models.  Consequently, the 
complex impacts of urbanization, agricultural land uses, and industrial activities on the chemical 
condition of salmon habitat may lead to large levels of uncertainty in habitat recovery planning.  
In this example, we suggest ways to improve habitat decision making by incorporating water 
quality data.  We provide nonquantitative solutions to reducing uncertainties that result from the 
omission of key habitat variables. 

Environmental monitoring studies have consistently detected a wide array of metals, 
pesticides, and other toxic substances in the surface water and sediment of salmon habitats, and 
also in the tissues of salmon themselves.  These contaminants may affect salmon abundance and 
survival via immediate lethal effects on individual fish.  However, such effects are rare compared 
to the vast array of potential sublethal effects that may reduce individual fitness and population 
performance and potential indirect effects such as reductions in the abundance of key prey taxa.  
Despite documented exposure conditions (Wentz et al. 1998, Ebbert and Embrey 2002), the 
impact of environmental contaminants on salmon health or on the biological integrity of aquatic 
systems is poorly understood and habitat-based models for salmon recovery rarely capture the 
biological significance of water and sediment quality.  Predictions of salmon population viability 
are likely to have high levels of model and prediction uncertainty if water and sediment quality 
are not included in model development. 

There are several reasons why the specific determinants of chemical habitat quality are 
often excluded from habitat models.  First, chemical habitat quality can be difficult and 
expensive to measure.  Second, there is a general absence of toxicological data for most of the 
chemicals that have been detected in salmon habitat.  Third, many conventional endpoints or 
biomarkers of chemical exposure have no clear or consistent relationship to the survival or 
reproductive success of the exposed animal.  Consequently, there is often a disconnect between 
the biological scale at which toxicological studies are conducted and the data requirements for 
current habitat recovery models (Hansen and Johnson 1999a, 1999b). 

Recovery plans that capture broad spatial and temporal patterns of chemical habitat 
degradation, despite incomplete empirical data, will minimize uncertainties around predicted 
outcomes of restoration actions and therefore reduce risks to salmon populations.  Contaminants 
occur in complex mixtures whose composition varies in time and space.  Salmon habitat 
conditions may reflect current land use activities or activities that were restricted or banned many 
years ago (e.g., persistent chemicals such as DDT).  Moreover, water quality at a specific point 
within a watershed may be determined by land use activities that are far removed from the focus 
of restoration efforts.  Acknowledging the large spatial and temporal scales at which 
contaminants can affect fish helps identify some of the uncertainty associated with predicting the 
effects of restoration actions.  We can surmise, for example, that the uncertainty of predicted 
increases in habitat capacity for a given restoration action is likely higher in areas with high 
levels of past or present on-site or upstream chemical contamination.  Likewise, we might expect 
inaccuracy and prediction uncertainty in survival estimates that are extrapolated from a stock 
within a pristine watershed to a stock that migrates through a highly contaminated estuary. 

In many cases, we do have data on chemical contamination but we do not know how to 
incorporate it into habitat recovery planning.  A limited number of studies have specifically 
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addressed the impacts of environmental contaminants on biological processes in Pacific salmon 
that are clearly linked to survival, migratory success, or reproductive success (Kruzynski and 
Birtwell 1994, Arkoosh et al. 1998, Hansen et al. 1999, Heintz et al. 2000, Scholz et al. 2000, 
Rice et al. 2001, Meador et al. 2002).  The challenge in estimating the effects of toxic chemicals 
on salmon health is to identify which contaminants are known or suspected to occur in particular 
habitats and pathways of toxicity for these chemicals that have significance for the survival, 
migratory success, or reproductive success of wild salmon. 

Planners or researchers should utilize the primary toxicological literature in the 
development of recovery plans.  Answers to the following questions can often be found in the 
toxicological literature and will enable more accurate and precise predictions about the effects of 
specific chemical contaminants on predicted salmon population performance. 

1. What is the evidence that a contaminant or class of contaminants is present in salmon 
habitat? 

2. What are the expected environmental concentrations? 
3. How long will exposures last? 
4. What life history stages of salmon are likely to be affected? 
5. What are the primary possibilities for sublethal toxicity in fish? 

From this information it may be possible to estimate the chances that the contaminant is 
currently or may in the future be a significant limiting factor in salmon population viability 
within the geographic area of concern. 

Incorporating toxicological data can improve decisions about the prioritization of water 
quality improvements versus physical habitat restoration.  For example, in watersheds where 
insecticides occur (primarily in agricultural and urban areas), it should be possible to estimate the 
potential loss of invertebrate prey, the subsequent reduction in the growth of juvenile fish, and 
the likelihood that salmon from contaminated habitats will have a lower rate of marine survival.  
If environmental monitoring data are unavailable, recovery planners might extrapolate potential 
chemical concentrations from other (monitored) basins with similar agricultural or urban land 
use.  Even simple comparisons between reported environmental concentrations and toxicity 
thresholds for aquatic invertebrates can reduce the scientific uncertainty surrounding the 
potential effects of contaminants on salmon population viability.  This in turn would improve 
restoration prioritization and watershed management plans. 

For water quality and other habitat characteristics about which less is known, it is clearly 
better to acknowledge the uncertainties and incorporate the available information, no matter how 
limited.  In the example of water quality, we can estimate and incorporate the direction of the 
effect even when we are not yet able to quantify the magnitude of that effect.  We can also seek 
empirical data from nontraditional sources.  Moreover, identifying key uncertainties will help 
establish priorities for ongoing and future research. 

Using Decision Rules When Empirical Data Are Inadequate 

A careful and honest examination of uncertainty in data, predictions, and models will 
inevitably lead to the identification of situations in which adequate empirical data for making a 
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decision are simply not available.  Uncertainty should not lead to inaction.  Methods are being 
developed to allow quantitative analysis of the sensitivity of decisions to uncertainties in the 
data.  For example, sensitivity analyses were used to demonstrate that the best management 
decision for Hector’s dolphin (Cephalorhynchus hectori) was robust to model uncertainties, and 
thereby removed uncertainty in the scientific data as an excuse for inaction (Slooten et al. 2000).  
In the face of large amounts of uncertainty in empirical relationships, simulation models and 
decision analysis were used to evaluate management actions for listed salmonids in the Snake 
River basin (Peters and Marmorek 2001, Peters et al. 2001).  Where empirical data are 
inadequate, we strongly discourage basing decisions on biased or imprecise predictions, 
prioritization systems for which guesswork must be substituted for data, or information that 
becomes inaccurate or imprecise at the scale for which the decision must apply.  Instead, we 
suggest that resource managers provide an explicit rationale for the decision that requires 
minimal data. 

The most important characteristics of a decision rule are that it can be documented and is 
robust.  Documentation is important because future managers will need to understand the basis 
for the decision.  This requirement prevents arbitrary decisions in the face of inadequate data.  
Decision rules that are robust to uncertainties in the information help prevent risky management 
decisions (Schnute and Richards 2001).  Decision rules presented in the literature include the 
following two examples. 

The Precautionary Principle can be stated as, “When an activity raises threats of harm to 
public health or the environment, precautionary measures should be taken even if some cause 
and effect relationships are not fully established scientifically” (Raffensperger and Tickner 
1999).  Because this principle shifts the burden of proof to those who create risks and does not 
define which risks are most important (Hilborn et al. 2001), it has generated much controversy 
and confusion about its appropriate implementation.  However, there are many examples of 
national and international policies that have been based on the Precautionary Principle.  
European environmental law is based on the Precautionary Principle through the 1992 Treaty on 
European Union, and the Rio Declaration from the United Nations Conference on Environment 
and Development binds the United States to implement the Precautionary Principle in 
environmental health protection (Raffensperger and Tickner 1999).  While we are not advocating 
this particular decision making rule, we present it as an example of a relatively simple guiding 
principle for high-level decisions in the absence of definitive data. 

Safe Minimum Standard (SMS) is another decision-making rule that has received 
considerable attention.  The SMS approach is a collective choice process that prescribes 
protecting a given level of a renewable resource unless the social costs are excessive (Berrens 
2001).  This approach to making environmental decisions is usually invoked in settings involving 
considerable uncertainty and potentially irreversible losses.  It prioritizes social costs over loss of 
renewable resources.  We present this approach for comparison to emphasize the importance of 
carefully choosing the decision-making principle and documenting exactly what considerations 
should be involved.  The choice of a guiding principle will dictate management decisions until 
improved information is available. 

The choice of a decision-making rule need not be purely theoretical.  The Assessment 
Approach for Habitat Recovery Planning section, page 5, discusses the importance of defining a 
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habitat strategy that includes gathering additional data and taking interim actions.  This habitat 
strategy is an excellent example of how a guiding principle can be used for decision making until 
adequate data become available.  The Prioritizing Potential Restoration Actions within 
Watersheds section, page 60, presents guidelines for selecting restoration actions before all of the 
habitat data are available.  Again, this is a simple and effective method for dealing with 
incomplete information. 

Another common approach to formalizing decision making without adequate empirical 
data or quantitative predictions is a scoring matrix.  A scoring matrix can be used to prioritize 
potential actions, project proposals, potential action sites, or information gathering.  The 
advantage of a scoring matrix is that ranks can be based on weighted priorities, for example, 
project longevity, proximity to other projects, or land ownership.  The decision path can be 
clearly explained and is easily repeatable.  As better information becomes available, the matrix 
can be adjusted.  A disadvantage of the scoring matrix is that the weights assigned to each 
priority can dramatically alter the outcome and specifying a satisfactory weighting function in 
advance is often difficult.  Examples of scoring matrices in current use include the Snake River 
Salmon Recovery Region Comprehensive Project Scoring Matrix (SRSRC 2002), the Lower 
Columbia Fish Recovery Board Interim Habitat Strategy Project Scoring Sheet (LCFRB 2001), 
and the Skagit System Cooperative methodology for rating individual landscape processes 
(Appendix C, page 157).  The scoring matrix provided by the Lower Columbia Fish Recovery 
Board dedicates a section to “Certainty of Success,” explicitly including some metrics of 
uncertainty. 

In each of the above examples, it is important to consider whether the decision strategy is 
robust to the types of uncertainties that exist.  A strategy that would be beneficial under a 
scenario that has a 50% chance of representing reality but detrimental the rest of the time is not a 
robust choice.  Strategies should be developed so that the outcome is acceptable given the range 
of possibilities for which there is uncertainty.  Again the Hector’s dolphin management plan is an 
example of a strategy that is explicitly robust to the uncertainties in the data (Slooten et al. 2000). 

Using decision-making strategies that require minimal data carries two obligations.  First, 
we must evaluate whether improved information would produce a cost-effective improvement in 
decision making (VOI analysis).  If so, then a strong attempt to reduce uncertainties by gathering 
more or better information is required.  The analyses described in the Types of Uncertainty 
subsection above can identify critical information uncertainties and reduce their impact.  Second, 
we must set a time frame for reevaluating the decision.  In the best possible scenario, decision 
strategies requiring minimal data serve as interim measures until additional information is 
available. 

In conclusion, we emphasize that estimates of uncertainty—quantitative where possible, 
qualitative for other situations—should be included with all information being considered in a 
decision-making framework.  A systematic treatment of uncertainty should include: 

1) identification of uncertain events, states of nature, relationships, and parameters, 
2) determination of the likelihood associated with each potential state or value, 
3) use of data or models to evaluate consequences of each potential state or value, and 
4) examination of the relationship between uncertain inputs and potential outputs to identify 

key uncertainties (Mishra 2001). 
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Even where a formal analysis of uncertainty is not possible, describing sources and magnitudes 
of uncertainty is important in providing managers with enough information to weigh potential 
risks and benefits of possible actions (Rosenberg and Restrepo 1994). 

A careful examination of the sources and causes of uncertainty will ensure informed 
decisions and make improvements in both precision and accuracy likely.  Quantifications of 
uncertainty can be formally incorporated into decision making using decision tables.  In other 
situations, simple strategies such as collecting data at multiple scales or incorporating data from 
other disciplines will provide for more informed decisions.  However, a lack of empirical data 
need not prevent informed decisions from being made in a clear and formal manner.  It is 
possible to implement strategies that require minimal data.  Such strategies are preferable to 
using biased or imprecise predictions, guesswork disguised as data, or information that is 
inappropriate to the scale of the decision. 

As we said earlier in this technical memorandum, our conceptual approach to habitat 
recovery planning is holistically focused on restoring or preserving watershed and ecosystem 
processes to provide good quality salmon habitat over the long term.  This implies that 
restoration of ecosystems to support salmon will include a wide range of actions affecting the life 
cycles of multiple species.  We began with a conceptual framework for understanding 
relationships among land uses, watershed functions, habitat conditions, and biota as a basis for 
organizing the habitat-related questions that each recovery plan should attempt to answer.  We 
separated recovery planning into two phases—Phase I planning that identifies recovery goals and 
Phase II planning that identifies causes of habitat loss or degradation and necessary ecosystem 
restoration actions.  Then we showed how results from both assessments can be used to prioritize 
restoration actions and how incorporating estimates of uncertainty into the decision-making 
process increases the likelihood of success in salmon habitat recovery planning.  Finally, new 
information gained from assessments and management experiments should be used to update the 
recovery plan. 
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