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ABSTRACT

Despite the significant advances in making monthly or
seasonal forecasts of weather, ocean hypoxia, harmful
algal blooms and marine pathogens, few such forecast-
ing efforts have extended to the ecology of upper
trophic level marine species. Here, we test our ability
to use short-term (up to 9 months) predictions of
ocean conditions to create a novel forecast of the spa-
tial distribution of Pacific sardine, Sardinops sagax. Pre-
dictions of ocean conditions are derived using the
output from the Climate Forecast System (CFS) model
downscaled through the Regional Ocean Modeling
System (ROMS). Using generalized additive models
(GAMs), we estimated significant relationships
between sardine presence in a test year (2009) and
salinity and temperature. The model, fitted to 2009
data, had a moderate skill [area under the curve
(AUC) = 0.67] in predicting 2009 sardine distribu-
tions, 5-8 months in advance. Preliminary tests indi-
cate that the model also had the skill to predict
sardine presence in August 2013 (AUC = 0.85) and
August 2014 (AUC = 0.96), 4-5 months in advance.
The approach could be used to provide fishery man-
agers with an early warning of distributional shifts of
this species, which migrates from the U.S.-Mexico
border to as far north as British Columbia, Canada, in
summers with warm water and other favorable ocean
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conditions. We expect seasonal and monthly forecasts
of ocean conditions to be broadly useful for predicting
spatial distributions of other pelagic and midwater
species.
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tem, Sardinops sagax

INTRODUCTION

The evolving science of ecological forecasting has
emerged as an imperative to anticipate environmental
change for human society (Clark et al., 2001). Ecolog-
ical forecasts help decision-makers and managers plan
for the future, make informed decisions regarding
alternative management choices and take appropriate
actions to better manage natural resources. Conse-
quently, ecological forecasting is considered one of the
key science capabilities required to support U.S.
coastal ecosystems into the future (Brandt et al., 2006;
Murawski and Matlock, 2006). Short-term forecasts of
physics, on the scale of days to seasons, are familiar —
we are accustomed to forecasts of tomorrow’s weather
or the outlook for the next hurricane season. However,
to date, in marine systems ecological forecasts at this
time scale have been primarily focused on the predic-
tion of algal blooms, hypoxia and pathogens (Greene
et al., 2009; Stumpf et al., 2009; Ali, 2011). Despite
the significant groundwork in forecasting provided by
these applications and by weather and climate science,
few such forecasting efforts have extended to the ecol-
ogy of upper trophic level marine species.

One forecasting tool that operates at this seasonal
time scale and at the interface of physics and ecology
is J-SCOPE: JISAO’s Seasonal Coastal Ocean
Prediction of the Ecosystem (http://www.nanoos.org/
products/j-scope/home.php/). J-SCOPE has been
developed for the northern California Current System
along the west coast of North America to provide pro-
jections of physical, chemical and biological ocean
properties on 6- to 9-month time horizons. The projec-
tions are testable and designed to be relevant to man-
agement decisions for fisheries, protected species and
the ecosystem. These forecasts are derived using the
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output from the Climate Forecast System (CFS) model
dynamically downscaled with the Regional Ocean
Modeling System (ROMS). More detail on the
J-SCOPE modeling system is provided below.

Pelagic species may be particularly responsive to
seasonal and inter-annual variations in climate
because they alter their distributions and migrations
directly in response to ocean conditions (McGowan
et al., 2003; Brodeur et al., 2005; Emmett et al., 2005;
Hooff and Peterson, 2006). For example, yearling sal-
mon abundance has been correlated on an annual basis
with water temperature, chlorophyll and copepod bio-
mass in the northern California current (Peterson
et al., 2010; Yuet al., 2012) and some of these parame-
ters are used as indicators of early salmon survival that
complement existing predictions of adult salmon runs
(http://www.nwfsc.noaa.gov/research/divisions/fe/estu-
arine/oeip/index.cfm). Other highly mobile pelagic
taxa, such as Humboldt squid (Dosidicus gigas) and jack
mackerel (Trachurus symmetricus) may rapidly expand
their range and become particularly abundant in new
regions during years or seasons characterized by
‘anomalous’ sea surface conditions (e.g., salinity, tem-
perature and dissolved oxygen)(Brodeur et al., 2006;
Chesney et al., 2013).

The Pacific sardine (Sardinops sagax) is an ecologi-
cally important pelagic forage fish and fishery target in
the California Current and is highly responsive to
ocean conditions. The species migrates from southern
California and Mexico in winter, to as far north as Bri-
tish Columbia during summer in years with warm
water temperatures. Moreover, the 14-16°C regions of
sea surface temperature (SST) where spring and sum-
mer spawning are commonly observed are highly vari-
able in their spatial extent. A variety of studies have
characterized its distribution and habitat associations
in an effort to better assess abundance and optimize
management (Logerwell and Smith, 2001; Emmett
et al., 2005; Kaltenberg et al., 2010; Weber and
McClatchie, 2010; Zwolinski et al., 2011). Sardine
spawning habitat, as measured by standardized egg sur-
veys, has been associated with water masses having
characteristic temperatures of 13.5-15°C and salinities
<33.3 practical salinity units (Checkley et al., 2000).
Other environmental parameters, including primary
productivity (Reiss et al., 2008), upwelling rate
(Lluch-Belda et al., 1991), or zooplankton abundance
(Lynn, 2003), have also been used to characterize sar-
dine habitat. In Pacific Northwest waters, Emmett
et al. (2005) showed that sardine density was related
to salinity, temperature and chlorophyll-a levels, but
at varying levels of significance depending on sardine
size or life history stage. More recently, Zwolinski et al.

(2011) developed a model to predict the habitat and
seasonal migration pattern of sardines based on SST,
chlorophyll-a concentration and the gradient of sea
surface height.

Here, we test our ability to use short-term (up to 6—
9 months) J-SCOPE predictions of ocean conditions
to create a novel forecast of the spatial distribution of
Pacific sardine. We use 2009 as a test year, estimating
relationships between forecasted ocean conditions and
sardine spatial distribution, and then quantifying the
strength of these relationships. Models of sardine spa-
tial distribution were fitted to three surveys available
for 2009 from the U.S. Pacific Northwest and Vancou-
ver Island, Canada. Finally, we provide a preliminary
test of forecast skill, comparing predicted sardine spa-
tial distributions for 2013 and 2014 to field

observations.

METHODS

J-SCOPE oceanography model description

The J-SCOPE model system is based on the climate
forcing as specified by the (CFS global climate model.
The CFS is a coarse-scale, coupled atmosphere-ocean-
land model that assimilates both in situ and satellite-
based ocean and atmospheric data (Saha et al., 2006,
2010). The CFS has been shown to forecast both PDO
and ENSO indices up to 6 months in advance (Wen
et al., 2012).

We used CFS to force a high-resolution (grid spac-
ing ~1.5 km) version of the ROMS (Shchepetkin and
McWilliams, 2005) that includes a state-of-the-art
biogeochemical module and nutrient, phytoplankton,
zooplankton, detritus (NPZD) module (Banas et al.,
2009; Davis et al., 2014) with an additional detrital
pool and oxygen submodel (Siedlecki et al., 2015).
ROMS is configured for the Oregon, Washington and
British Columbia (43-50°N) coast after Giddings
et al. (2014). Our implementation of ROMS includes
17 rivers with daily discharge and temperature data
from the USGS gage stations and an Environment
Canada gauging station for the Fraser River as
described by Giddings et al. (2014). The rivers enter
the domain with constant saturated values of oxygen
and a seasonal cycle for nutrients from a climatology
(i.e., seasonal average) of USGS gage stations data
described by Davis et al. (2014). For the forecasts, the
rivers are forced using a seasonal pattern of local river
discharge that is an average over 7 years (2000-2007).
Western and southern boundary conditions on sea sur-
face height, velocity, temperature and salinity are
derived from the CFS, interpolated to the ROMS grid.
Empirical relationships were derived relating nutrients
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and oxygen to salinity from the observations of Con-
nolly et al. (2010) as described by Davis et al. (2014)
and Siedlecki et al. (2015). The ROMS output fea-
tures specific oceanic properties crucial to the near-
shore and coastal marine ecosystems such as
temperature, salinity, oxygen, chlorophyll and small
zooplankton distributions, currents, and upwelling
indices. Note that here for sardine we focus mainly on
the ]-SCOPE model system in the forecast mode, pre-
dicting 9 months forward from January 2009 and April
2013 and 2014, with no foresight about coarse scale
(CFS) or fine scale (ROMS) ocean conditions for the

year.

Oceanography model forecasts
The ROMS model, forced by CFS, predicts spatial pat-

terns of temperature, salinity, nutrients, chlorophyll,
zooplankton and oxygen for the coastal zone from
Southern Oregon to the mid-west coast of Vancouver
Island, British Columbia. Nine-month forecasts were
produced for 2009 as well as for 2013 and 2014. The
year 2009 was chosen as a test year it because it
included typical summer winds (within 0.5 m s~ ! of
normal) and because of the availability of mooring
observations for model validation. Additionally, we
expected the moderate-to-weak El Nino conditions of
2009 to also occur during 2013, the first true forecast
year for our exercise. (Only now do we know that El
Nino that began to develop in fall 2012 failed to mate-
rialize in 2013.) Results are available on the Northwest
Association of Networked Ocean Observing Systems
(NANOOS) website  (http://www.nanoos.org/prod-
ucts/j-scope/home.php/).

Oceanography model skill

In a separate manuscript summarized on the JSCOPE
website, we consider the skill of J-SCOPE’s predictions
of ocean conditions. Here we summarize the model
skill and performance to set the stage for sardine pre-
diction, based on comparisons to a 2013 coast-wide
cruise and satellite data. We use the JSCOPE ROMS
in forecast mode, initialized in April 2013. We con-
sider forecasts through October 2013 (i.e., projecting
1-6 months ahead).

Model skill can be evaluated in the J-SCOPE fore-
casts; however, skill should also be understood in the
context of the hindcast performance. In our case, a
hindcast is an instance where data assimilation tech-
niques in CFS (but not directly in ROMS) allow inclu-
sion of hindsight knowledge about ocean conditions
(e.g., from moorings or satellites) during the period of
simulation. Below, in the context of the coast-wide
cruise data, we discuss these two components of model
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skill: the comparison between observations and the
hindcast, and the comparison of the hindcasts to the
forecast used for sardine prediction.

Comparisons between the observations and mod-
eled fields were made with target diagrams (Jolliff
et al., 2009), and provide a summary of the pattern
statistics and model biases. In these diagrams, the dis-
tance from the origin is proportional to the total Root
Mean Squared Difference (RMSD). Position on the x-
axis informs whether the model’s standard deviation is
larger (X > 0) or smaller (X < 0) than the standard
deviation of the reference field, in addition to provid-
ing information about the positive (Y > 0) or negative
(Y < 0) bias. Modeled fields that fall within values of 1
of the RMSD and bias, each normalized by the nor-
malized standard deviation, indicate a better than
average modeling efficiency metric (MEF) (Stow et al.,
2009), and that the reference field and modeled points
are positively correlated (Jolliff et al., 2009).

To test model performance, the 2013 hindcast
simulation was compared with co-located NOAA
PMEL Carbon Cruise data (Feely et al., 2015) (Fig-
ureS1). The model performs better with salinity and
SST off the coast of Oregon and Washington than
it does farther north (Fig. 1a). In addition, the
model performs better in deeper water and on the
outer shelf than it does near the coast (Fig. 1b).
SST is generally biased high (Fig. 1a) although there
is more skill on the outer shelf (Fig. 1b). In Wash-
ington, both salinity and SST have less variability in
hindcasts than in observations (Fig. la). To test
model predictability, the 2013 forecast was compared
with the 2013 hindcast simulation. Results indicate
that salinity is predicted with more skill than SST,
showing minimal bias, and variability that is compa-
rable to the variability in hindcasts and observations
(Fig. 1b,d). SST has the most predictive skill in the
spring (April to May, Fig. 1c) from both the January
and April initialized forecasts.

We also compared J-SCOPE output to SST satellite
data for 2013 to further assess the model’s skill in simu-
lating observed spatial distributions of SST, which is
critical to predicting spatial habitats. Satellite data
were monthly composite SST data provided by
NOAA’s Coastwatch program, derived from the
AVHRR instrument aboard NOAA'’s POES satellites.
Data were accessed through ERDDAP (http://coast-
watch.pfeg.noaa.gov/erddap/index.html). Given the
SST bias evident in the comparisons to NOAA PMEL
Carbon Cruise data, we applied the method described
below that estimates the bias but focuses on whether
the relatively warm (and cold) patches are in the cor-
rect spatial location.
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Figure 1. Target diagram (Jolliff et al., 2009) for modeled fields from 2013 from the NOAA PMEL Carbon Cruise data. The
y-axis is bias normalized by the standard deviation of the observations, and the x-axis is the bias-corrected Root Mean Square
Difference (RMSD) or, also normalized by the standard deviation of the observations (a) Model performance as indicated by the
comparison between the hindcast and the observations over the upwelling season (April -October) for particular regions of the
domain. Symbols indicate sea surface temperature (SST) and sea surface salinity (SSS). (b) Model performance as indicated by
the comparison between the hindcast and the observations over the upwelling season (April -October) for particular depth bins
within the domain. The next two panels (c)—(d) relate to model predictability as indicated by the comparison between the fore-

cast initialized in January (diamonds) and April (stars) and the hindcast: (c) SST, (d) SSS. The color indicates the RMSD.

5 Target Diagram for SST and SSS, 2013

SST(British Colum?:iaj J T,
Normglized Bias
10 o 10 5
SST(Washington)
51, o 51 m 4
: $88(Washington) SST(Oregon) :
Py Normalized RM$D
0 -1 -5 oo/ 5 10
S$8S(British Columbia) [SSS(Oregon) 3
-5 -5
2
-10 =10
" (a) ;
-15

-15 =10 -5 0 5 10 15

SST, 2013

Normalized Bias

1

1] Gun-Jul(s) . 0
. ! Apr-May(1)* 1.3
Jun-Jul(3) 0 Aug-Sep(7)
f L

01 .2 = 3 1 % =

Nprmalized RMSd\ ‘Mms) Aug-Sep(5) -
—1 1 4 = L

.Egb-Mar(ﬂ -
5] . 1.1
(c)
. 1
-3 -2 —1 0 1 2 3

We quantified model versus satellite similarity using
the numerical fuzzy kappa method, which compares
values (cell by cell) on two maps. A kappa statistic
value of 100% is ideal. The method requires that the
model (J-SCOPE) and data (satellite SST) are inter-
polated onto the same grid. For the purposes here, we
use the 0.0125-degree grid from the satellite data,
meaning approximately a 1.4-km grid spacing. The
fuzzy kappa statistic allows consideration of a neigh-
borhood of points, rather than a strict point-to-point
comparison; it was recently suggested for use in
oceanographic models by Rose et al. (2009) and we
apply an implementation by Visser and De Nijs
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(2006). Based on correlation distances for the coastal
ocean (Goebel et al., 2014), we consider a ‘neighbor-
hood’ of 5.6 km (four grid steps) with an exponential
decline with distance. This means that the similarity
calculation give some weight (50%) to cells 1 step
away, and about 6% weight to cells 4 steps away. Cells
greater than four steps away do not factor into the
fuzzy kappa statistic. Importantly, we acknowledge
that there is bias (temperature offset) in J-SCOPE. For
each month, we calculated this bias (mean SST,,ge] —
mean SSTy,.), and use the bias-corrected spatial field
to produce maps and for calculation of similarity statis-
tics. In simple terms, the spatial comparison asks

© 2015 John Wiley & Sons Ltd, Fish. Oceanogr., 25:1, 15-27.
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whether patches of warm and cool water are found in a
similar location on the two maps although warm
patches in J-SCOPE were typically degrees hotter than
in the satellite data.

The results suggest that the model has substantial
skill to capture spatial patterns of SST for the year
2013, up to 5 months in the future. The fuzzy kappa
statistic was ~95% for months 1-5, then fell to 88% in
month 6 (Figures S2-S5). In this sixth month (Octo-
ber), ]-SCOPE predicted cold nearshore water, partic-
ularly south of the Columbia River, which was not
observed in the satellite data (Figure S5). The bias cor-
rection was crucial; JSCOPE had mean values of SST
1-3 degrees warmer than data (satellite SST) for these
months.

For the application of these forecasts to sardine dis-
tributions, three key points arise from the model skill
tests above. First, there is a substantial bias in SST
(J-SCOPE warmer than observations), and this is evi-
dent even in both forecasts and hindcasts. The SST
bias means that the model is able to forecast the
approximate location of relatively warm patches of
water, no more than 6 months in advance, although
absolute SST is less certain. The implication of this is
that SST bias must be accounted for in the sardine
modeling; below, to address this we intentionally fit
sardine models to 2009 JSCOPE forecasts (not obser-
vations), so that parameter estimates applied to make
2013-2014 forecast predictions account for these war-
mer than observed temperatures. Second, model skill
for SST is worst (most positively biased) in the north,
and so we must carefully evaluate sardine distribution
predictions for that region. Finally, the model (partic-
ularly when hindcasts are compared to observations)
shows instances of lower variability than in observa-
tions, suggesting that some types of variability on fine
spatial or temporal scales are not represented by -
SCOPE. We, therefore, expect a higher skill at pre-
dicting monthly, as opposed to daily statistics of the
regional ocean. Therefore, the aim of the work below
is to predict sardine distributions from monthly predic-
tions of ocean condition, rather than daily scales.

Sardine data

We developed a generalized additive model (GAM)
that predicts distributions of Pacific sardine in the
northern California Current in 2009. We improve the
power and geographic scope of our analysis by combin-
ing three 2009 sardine survey datasets, two from the
USA and one from Canada. Although the sampling
methodologies differ between surveys, described
below, all are expected to reliably detect presence/ab-
sence within surveyed areas.

© 2015 John Wiley & Sons Ltd, Fish. Oceanogr., 25:1, 15-27.

Northwest sardine survey (NWSS)

The Northwest Sardine Survey is an aerial survey
developed by a consortium formed by the West Coast
sardine industry (Jagielo et al., 2011). The survey
began with a preliminary study in 2008, with a full
survey the following year. Surveys consist of aerial
transects flown by spotter pilots, to identify sardine
schools and estimate school surface area. We restrict
our analysis to only presencef/absence. In the North-
west Sardine Survey, sardine were identified via aerial
photogrammetry, which in 2009 involved the use of
3660 individual photographs taken on August 19, 22,
23 and 24 (one additional day’s sampling occurred
south of the JSCOPE domain). Sampling extends
along the entire coasts of Oregon and Washington
with each transect extending from three nautical
miles from shore westward to 35 nautical miles from
shore.

The N'WSS photographs are taken in rapid succes-
sion by spotter planes and may overlap (Jagielo et al.,
2011), leading to challenges with spatial autocorrela-
tion and potentially over-emphasizing the effective
sample size of this survey. Variograms suggest that spa-
tial autocorrelation in sardine abundance declines at a
minimum of approximately 1 km distance. However,
this 1 km is finer than the resolution of the J-SCOPE
ROMS, and furthermore aggregating NWSS data to
this level would still result in NWSS contributing over
85% of the total sample size from the three surveys. To
address both the spatial autocorrelation and sample
size, along each NWSS transect, we aggregated points
within each 0.1° of longitude (~7.5 km), which is an
interval with minimal spatial autocorrelation. This
results in 169 binned observations from the NWSS,
comprising 48% of total observations from the three
surveys.

West Coast Vancouver Island (WCVI) trawl survey

The West Coast of Vancouver Island sardine and pela-
gic ecosystem night time trawl survey in 2009 involved
net sampling, with the net opening 12 m high, 32 m
wide, and with a towing speed of approximately
2.5 m s ' (Flostrand et al., 2012). Sampling was con-
ducted with a model 250/350/14 mid-water rope trawl.
In 2009, the headrope of the tow was consistently near
the surface (<4-m deep), as intended to capture sar-
dine expected to be in the upper water column at
night. Sampling in 2009 spanned the 15-day period
from 22 July to 5 August. Sampling extended from
north of 50°N latitude to the southern end of Vancou-
ver Island (48.4°N latitude), but we use only presence/
absence data from the 96 sets south of the northern
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boundary of the ROMS model (50°N). Sampling fol-

lowed line transects with ad hoc spatial patterns.

NOAA predator survey
The Predator Survey (Emmett et al., 2001, 2005),

begun in 1998, involves a series of surface trawl sets
conducted at night along two transects at the mouth
of the Columbia River. A Nordic 264 rope trawl mea-
suring approximately 12-m deep by 28-m wide is
deployed using towing speeds of approximately
1.5 m s . In 2009, 84 stations were sampled over 24
sampling days, spanning from 9 May to 25 August.
Sardines were absent prior to 24 May. Sardine density
per trawl was recorded, but here we focus on the pres-
ence/absence only.

Ocean conditions extracted from J]-SCOPE forecasts
The ROMS model used in the J-SCOPE forecast pre-

dicts time-varying, three-dimensional fields for a broad
set of physical and biological variables. Here we focus
only on variables likely to be important to sardines,
measured either at the surface or integrated over the
top 10 m. Net sampling from the three surveys either
focused on the top 10 to 12 m (Predator survey,
WCVI survey) or reported that the bulk of fish
occurred at those depths (NWSS). From ROMS, we
extracted salinity (averaged over top 10 m), chloro-
phyll-a in surface waters (top 2 m) and SST. Chloro-
phyll-a was averaged over the top 2 m to be consistent
with the depth of satellite detection, and the tempera-
ture was extracted at the surface to maintain compara-
bility with satellite observations used in prior studies
(Checkley et al., 2000; Reiss et al., 2008; Zwolinski
et al., 2011).

From the sardine surveys, we record presence or
absence per location, latitude and longitude. For each
survey point and date, we identified the nearest point
on the ROMS grid and assigned predicted ocean con-
ditions from the grid point to the survey point on that
date.

Statistical analysis

We used GAMs to predict sardine presence or absence
under forecasted conditions (monthly averages).
GAMs capture the relationship between predictors
(ocean condition) and response (sardine presence or
absence) without pre-specifying the form of such rela-
tionships. We used a binomial error distribution and a
logit-link function [mgcv package in R, Wood (2004)],
according to Zwolinski et al. (2011). We initially
explored GAMs allowing interactions between paired
combinations of temperature, salinity and chlorophyll-
a, but then limited the model to include only the most

important interaction, between salinity and tempera-
ture, as well as a smoothed term for chlorophyll alone.
We applied smoothers with a maximum-basis dimen-
sion of 3; allowing additional smoothing (higher
dimensions) led to multi-modal response curves that
are unlikely to be realistic based on previous sardine
studies. We used the ‘select’ option in the gam func-
tion within mgcv to handle model selection; the result
was that chlorophyll was effectively eliminated from
the model (Wood, 2006), leaving a final model of sar-
dinePresence ~ te(temperature, salinity, k = 3). We
report standard measures of model fit including R?,
percent of deviance explained and generalized cross-
validation scores (GCV). The predictive and explana-
tory area under the curve (AUC), described in more
detail below, were also calculated for 2009 to assess
model fit, and to test skill for 2013 and 2014. AUC
calculations follow the methods of Zwolinski et al.
(2011).

AUC is a model selection criterion that tests the
ability of a model to discriminate between presence
and absence (Fielding and Bell, 1997). Developed by
radar operators during World War II, it tests the ability
of a model (or radar operator) to discriminate true
(real world) presences and absences of sardines (or
ships). Specifically, it plots model skill in terms of two
axes: (i) model sensitivity, the proportion of true pres-
ences that the model predicts as true; and (ii) the false
positive rate, the proportion of true absences that the
model predicts as present. AUC values of 0.5 suggest a
model that performs no better than random, and AUC
values of 1 are ideal. AUC is perhaps the most
straightforward way to assess model skill, and we evalu-
ate two types: predictive and explanatory AUC. For
the year 2009, we calculated predictive AUC by ran-
domly selecting 80% of points as a learning set to fit
the GAM, then testing model skill against the remain-
ing 20% of observations. Explanatory AUC for 2009
examines each of the three datasets (NWSS, WCVI
and Predator surveys) individually, testing the model
skill of the final fitted model to predict observations
within each survey.

As a preliminary test of forecasting skill, we also
calculated AUC for 2013 and 2014, true forecast years
for which limited data are available. Predictions for
2013 and 2014 were based on the GAM model fitted
to 2009 data. From the August WCVI survey, we
obtained 51 additional tows for 2013 and 59 additional
tows for 2014, in which no sardine were detected.
Additionally, midwater trawl data from July and
August 2013 and 2014 are available from the NOAA
Southwest Fisheries Science Center Coastal Pelagic
Species Life History Program (ERDDAP 2015). For
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our model domain, sardine presence was recorded in
two of 11 of these survey points in July 2013, 14 of 44
survey points in August 2013, two of 28 survey points
in July 2014 and five of 21 points in August 2014.
Combining the WCVI and NOAA Coastal Pelagic
Species Life History Program data, we view August
2013 and 2014 as having a minimal sample size to
quantitatively test forecast skill.

For the final GAM, we inspected plots of residuals
and effects of each smoothed term, holding all other
predictors at average levels. We also plotted maps of
observed and predicted presence and absence to assess
model skill in different geographic regions of the three
surveys available for 2009, and the two surveys avail-

able for 2013 and 2014.

RESULTS

The J-SCOPE predictions of ocean condition contain
sufficient information to forecast sardine presence/
absence 5-8 months in advance. The GAM model
has moderate (not excellent) predictive power, but the
ability to produce forecasts is novel and has not been
possible with previous approaches relating sardine dis-
tribution to the ocean environment.

The fitted GAM model estimated significant rela-
tionships between sardine presence and 2009 forecasts
of temperature and salinity. GCV was 1.20, R* was
0.065 and 6.8% of the deviance was explained. Predic-
tive AUC for 2009 was 0.67 £ 0.09, suggesting the
model could predict the presence of sardines at sam-
pled locations and sampled dates in 2009 with moder-
ate skill. Specifically, a predictive AUC value of 0.67
implies that 67% of the time, a survey point where fish
were actually observed will have a predicted probabil-
ity of presence greater than a randomly selected survey

point where sardine were absent. The explanatory
AUC for 2009 was highest for the NOAA Predator

Survey (0.75), and lower for the NWSS dataset (0.67)
whereas explanatory AUC for the 2009 WCVI survey
was poor (0.33).

Diagnostic plots were used to visualize and further
characterize parameter relationships in the GAM.
Plots revealed that the predicted relationships between
sardine presence and ocean conditions were generally
consistent with other published literature (Fig. 2)
(Checkley et al., 2000; Emmett et al., 2005; Zwolinski
et al., 2011). Sardine presence was more likely to
occur at lower salinities and warmer temperatures,
with a slight decline in sardine at temperatures >16 C
(Fig. 2). There is a strong interaction between salinity
and temperature (Fig. 3), with salinities >30 parts per
thousand reducing the probability of sardine presence
even when temperature was optimal.

Maps of sardine survey points superimposed over
model predictions of sardine presence at these same
points provided a rapid approach to validate and visu-
ally assess the geographic extent and spatial accuracy
of these predictions. The model correctly predicted
suitable habitat (surface ocean conditions) in 2009 for
sardine in a variety of coastal areas near the Columbia
River, Grays Harbor and Willapa Bay coastal estuaries
(U.S.), and off the northwestern and southwestern
coastline of Vancouver Island, BC (Canada) (Fig. 4).
The model also correctly predicted large areas of
unsuitable habitat along much of the Oregon coast. In
other areas, such as off central Vancouver Island
(~126° west longitude), the model predicted sardine
presence although sardine were not observed in the
WCVI survey.

The model forecast that in August of 2013 the areas
with the highest probability of sardine presence (or
suitable habitat) would be off the Columbia River and
the Washington Coast, extending no farther north
than the southern coast of Vancouver Island (Fig. 5).

The J-SCOPE CFS-ROMS projections underlying this

() (b)
8 " — S il
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Figure 2. Generalized addictive model e
(GAM) plots for temperature and salin- v "
ity. The y-axis is probability of sardine s A
presence, for a given value of the variable o o
represented on the x-axis. In each plot, S I e e e = —
the other variable is held at its mean
value. Red points are observed presence 10.0 12.5 15.0 17.5 26 28 30 32

(y-value of 1) and absence (y-value of 0).
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Figure 3. Contour plots displaying the predicted probability
of sardine presence versus temperature and salinity. Blue
areas indicate lowest probability of sardine presence and yel-
low represents probabilities >0.6.

Temperature

26 28 30 32
Salinity

were based on forecasts initialized to represent 1 April,
2013, and hence were forecast 5 months in advance.
Field observations support the presence of sardine off
the Columbia River and Washington State, but the
August WCVI survey did not detect any sardine off
southern Vancouver Island (Fig. 5). Thus, the model
captures the observations off Washington and Oregon
but over-predicts sardine presence off a portion of
Vancouver Island. The AUC for August 2013 is 0.85,
beating the null expectation of 0.5.

For July 2013, sample sizes are much smaller, but
model performance appears to be similar to that for
August. The model forecasts sardine presence (or suit-
able habitat) off the Columbia River and the Wash-
ington Coast, but also off the southern coast of
Vancouver Island (Figure S6). The 11 observations
from the SWFSC Coastal Pelagic Species Life History
Program suggest that sardine were present in southern
Oregon (FigureS6), and fishery records indicate that
24 000 metric tons were landed at Columbia River
ports and farther north in Washington (PACFIN,
2015). There were no fishery landings in British
Columbia in 2013 (Hill et al., 2015), reinforcing the
pattern that the model captures Oregon and Washing-
ton observations but over-predicts sardine presence for
the southern portion of Vancouver Island. AUC is 1.0
but is based on only two records of sardine in the 11
observations.

The model forecast that in August 2014 the areas
with the highest probability of sardine presence (or

Figure 4. 2009 field survey locations (black and grey points)
with the model prediction of probability of sardine presence
for the same locations (represented as a continuous gradient
from 0, white, to 1, green).
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suitable habitat) would be off the Washington and
Oregon Coast, with a poor habitat off Vancouver
Island (Fig. 6). In concurrence with this, the August
WCVI survey did not detect any sardine off Vancou-
ver Island, whereas the SWFSC Coastal Pelagic Spe-
cies Life History Program survey detected sardine off
the Columbia River and Oregon. The J-SCOPE pro-
jections underlying this were initialized to represent 1
Apri, 2014 (a lead time of over 4 months), yet AUC
for August 2014 was 0.96.

Forecasts for July 2014 were similar to August, with
areas of highest probability for sardine predominately
off Oregon and Washington (Figure S7). AUC was 0.5
but based on a very small sample size (two records of
sardine among 28 observations). Qualitatively, taken
together the July and August 2014 predictions suggest
that J-SCOPE correctly forecast that sardine would be
found off Oregon and Washington, but would fail to

© 2015 John Wiley & Sons Ltd, Fish. Oceanogr., 25:1, 15-27.
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Figure 5. Predicted August 2013 probability of sardine pres-
ence over the J-SCOPE model domain, overlaid with field
observations from the WOCVI survey and the SWESC
Coastal Pelagic Species Life History Program.
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reach British Columbia. In agreement with this, there
were no sardine fishery landings in British Columbia at
any point during 2014, but 16 000 metric tons landed
in Oregon and Washington (Hill et al., 2015).

DISCUSSION

The key innovation we provide here is the ability to
forecast, with moderate skill, sardine distributions 4—
8 months in advance. Our research suggests that rela-
tively simple models using predictions of temperature
and salinity from the J-SCOPE system can be used to
forecast the distribution of sardines.

Pacific sardine are an abundant coastal pelagic spe-
cies, with high ecological and economic relevance that
is complicated by their migrations and distributional
shifts between the U.S., Canada and Mexico. The
total abundance of the northern subpopulation had a

© 2015 John Wiley & Sons Ltd, Fish. Oceanogr., 25:1, 15-27.

Figure 6. Predicted August 2014 probability of sardine pres-
ence over the J-SCOPE model domain, overlaid with field
observations from the WCVI survey and the SWESC
Coastal Pelagic Species Life History Program.
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recent peak abundance of over 1 million metric tons
in 2006-2007, then declined to less than 100 000 met-
ric tons in 2015 (Hill et al., 2015). Prior to this
decline, sardine were consistently one of the top two
finfish species by U.S. landings. In addition to being a
key fishery species, sardine and other small pelagic fish
are considered an important trophic link in the
California Current, particularly for predators such as
seabirds, salmon, tunas and some rockfish (Dufault
et al., 2009). Ecosystem models of this system
(Kaplan et al., 2013) and others (Smith et al., 2011;
Pikitch et al., 2012) underscore the role of these spe-
cies in marine ecosystems. Based on the ecological and
economic roles of sardines and anchovies, as well as
time series of field observations, these species are key
indicators that are tracked and reported to managers as
part of the California Current Integrated Ecosystem
Assessment (Levin et al., 2013). In the Integrated
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Ecosystem Assessment, the emphasis is not just on
total abundance trends, but regional differences driven
by local ocean conditions such as those modeled here.

Potential role of forecasts for sardine and other pelagic
species

Our method could serve as an early warning signal for
fishery managers who make decisions on a monthly or
quarterly basis, for instance to adjust harvest or to
change areas open to fleets, despite the strong response
of the components to climate and physical forcing
(Bjorkstedt, 2010; Keller et al., 2010; Keister et al.,
2011). For sardine specifically, the stock is shared
jointly between the U.S., Canada and Mexico, with
the U.S. assigned a fixed fraction (87%) of a tri-
national harvest guideline. However, the seasonal
migration of sardine from southern California to the
northern regions is highly variable, with the stock fail-
ing to reach Canada in certain years (such as 2013 and
2014). Our aim here is to provide a warning that such
distributional shifts may be impending. Given the
assumptions and simplifications in the oceanographic
model as well as the sardine GAMs, we do not foresee
the method here as one to predict exact fish school
location; the goal is to forecast monthly averages that
suggest the approximate extent of sardine distribution.
The forecasts here are 4- to 8-month projections (from
starting dates of January 2009 and April 2013 and
2014), with good performance in the 4-5 month
range, as observed for summer 2013 and 2014.

We expect forecasts of ocean conditions to be
broadly useful for predicting spatial distributions of
other pelagic and midwater species. For instance,
Agostini et al. (2006) showed that Pacific whiting
(Merluccius  productus) follow poleward currents,
whereas albacore tuna typically track SST (Alverson,
1961; Laurs et al., 1984). Coho salmon survival (rather
than spatial distribution) has been shown to be closely
related to the dominance of boreal copepods in the
California Current (Peterson, 2009); copepods abun-
dance in turn appears related to water transport (Bi
et al., 2011; Keister et al., 2011; ). These aspects of
ocean currents and temperatures are forecast by the
CFS-ROMS system developed here, and the observed
ecology of these species can similarly be tested against
model predictions. The value of seasonal forecasts for
fisheries management has been demonstrated for sal-
mon fisheries in Alaska’s Bristol Bay salmon fishery
(Hyun et al., 2005). Most promisingly, in Australia a
predictive ocean-atmosphere model (Spillman and
Alves, 2009) somewhat similar to J-SCOPE has been
applied to predict distributions of tuna (Hobday et al.,
2011; Eveson et al., 2015). These Australian case

studies emphasize the prediction of specific phenom-
ena that trigger stakeholder decisions (Hobday et al.,
2015), for instance, shifts in the northern extent of
tuna habitat and, therefore, the probability of tuna
catch, similar to our motivation for forecasting sardine
migration.

Caveats and context

Other authors have provided similar, or even more
detailed, relationships between ocean conditions and
sardine distribution, although not in forecast mode.
For instance, Emmett et al. (2005) found that small-
and medium-sized sardines collected in surface trawls
off the Pacific Northwest were more strongly positively
related to temperature than were adults, whereas
chlorophyll-a was an important explanatory variable
for juvenile and adult stages but not for eggs or larvae.
Our study did not differentiate between age-classes of
sardine, a factor that may be used to refine future itera-
tions of the model. Zwolinski et al. (2011) used SST,
chlorophyll-a concentration and the gradient of sea
surface height to predict potential sardine habitat
throughout the California Current. Although their
predictions were based on the presence of sardine eggs
in southern and central California surveys, they vali-
dated their predictions for distributions of the north-
ern stock with fishery landings and net sample data.
Our work benefits from and further supports these pre-
vious efforts to define factors that drive sardine distri-
butions. Finally, we note that our model does not link
sardine distribution to stock size (MacCall, 1990),
which may be important towing to the recent decline
in abundance.

The work presented here can be improved by vali-
dation against additional years of data from the three
sardine surveys, as well as additional net or acoustic
surveys. Our aim was to continue the J-SCOPE model-
ing system to provide the oceanographic projections
for this validation. Statistical relationships could be
fine-tuned to differentiate between age-classes of sar-
dine, or to predict abundance rather than simply
distribution.

CONCLUSIONS

Pacific sardine are a flagship species for understanding
the effects of oceanography, climate and climate
change on fish species in the California Current. In
addition to the temperature responses of sardine spa-
tial distribution, the sardine stock—recruitment rela-
tionship has been shown to respond to temperature
(Jacobson and MacCall, 1995; Lindegren and Check-
ley, 2012). Based on those studies, sardine is the only

© 2015 John Wiley & Sons Ltd, Fish. Oceanogr., 25:1, 15-27.
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U.S. West Coast species managed with a harvest con-
trol rule that varies as a function of temperature (Hill
et al., 2012). Rykaczewski and Checkley (2008) have
proposed upwelling mechanisms that may underlie
these statistical relationships with temperature. The
behavior of the stocks under climate shifts such as El
Nino and the Pacific Decadal Oscillation are also rela-
tively well understood (Chavez et al., 2003). In light
of these drivers of recruitment and distribution, King
et al. (2011) and Freon et al. [2009, in Checkley et al.
(2009)] discuss how climate change may impact sar-
dine populations. Our immediate goal of forecasting
short-term responses of sardine to ocean conditions is
more modest, but can inform longer-term projections
of sardine response to a changing California Current.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in
the online version of this article:

Figure S1. Sample locations for sea surface temper-
ature and salinity from the NOAA PMEL Carbon
Ceruise in 2013.

Figure S2. Fuzzy kappa statistic (Visser and De Nijs,
2006; Rose et al., 2009) measuring J-SCOPE model
skill for sea surface temperature (SST), 1-6 month
lead times. Kappa statistic of 1.0 is ideal. Average
monthly fields compared to satellite monthly compos-
ite. Note each month’s model predictions have been
bias corrected by 1-3 "C to account for warmer aver-
age predictions in J-SCOPE relative to satellite obser-
vations.

Figure S3. Model skill for 2013, comparing satellite
sea surface temperature (SST) monthly composite to
J-SCOPE monthly mean (1 month ahead).

Figure S4. Model skill for 2013, comparing satellite
sea surface temperature (SST) monthly composite to
J-SCOPE monthly mean (3 months ahead)

Figure S5. Model skill for 2013, comparing satellite
sea surface temperature (SST) monthly composite to
J-SCOPE monthly mean (6 months ahead)

Figure S6. Predicted July 2013 probability of sardine
presence over the J-SCOPE model domain, overlaid
with field observations from the SWESC Coastal Pela-
gic Species Life History Program.

Figure S7. Predicted July 2014 probability of sardine
presence over the J-SCOPE model domain, overlaid
with field observations from the SWESC Coastal Pela-
gic Species Life History Program.
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