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Abstract 10 

The natural mortality rate M is an extraordinarily difficult parameter to estimate for many 11 

fish species. The uncertainty associated with M translates into increased uncertainty in 12 

fishery stock assessments. Estimation of M within a stock assessment model is 13 

complicated by the confounding of this parameter with other life history and fishery 14 

parameters which are also uncertain, some of which are typically estimated within the 15 

model. Ageing error and variation in growth, which may not be fully modeled, can also 16 

affect estimation of M, as can various assumptions, including the assumed form of the 17 

stock recruitment function (e.g., Beverton-Holt, Ricker) and the level of compensation 18 

(or steepness), which may be fixed (or limited by a prior) in the model. To avoid these 19 

difficulties, stock assessors often assume point estimates for M derived from meta-20 

analytical relationships between M and more easily measured life history characteristics. 21 

However, these relationships depend upon estimates of M for a great number of species, 22 

and those estimates are also subject to errors and biases (as are, to a lesser extent, the 23 
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other life history parameters). Therefore, at the very least, some measure of uncertainty in 24 

M should be calculated and used for evaluating uncertainty in stock assessments as well 25 

as in management strategy evaluations. Given error-free data on M and the covariate(s) 26 

for the meta-analysis, prediction intervals would provide the appropriate measure of 27 

uncertainty in M. In contrast, if the relationship between the covariate(s) and M is exact 28 

and the only error is in the estimates of M used for the meta-analysis, confidence intervals 29 

would appropriate. Using multiple published meta-analyses of M’s relationship to various 30 

life history correlates, and beginning with the uncertainty interval calculations, I develop 31 

a method for creating combined priors for M for use in stock assessment.  32 

 33 
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Introduction 46 

 47 

The majority of models commonly used for stock assessment, with the exception of 48 

surplus production models, require (or produce) an estimate of the instantaneous natural 49 

mortality rate (M). However, M is a particularly difficult parameter to estimate for many 50 

commercially important fish species. The high degree of uncertainty in the value of this 51 

parameter is a problem that can greatly affect the accuracy and precision of the stock 52 

assessment results. Yet most stock assessments use a point estimate for M and, at best, 53 

include sensitivity analyses across a range of values which are considered plausible for 54 

M. Management strategy evaluations (MSEs), which are used to evaluate how well 55 

management strategies work given uncertainty in and estimation errors for population 56 

and fisheries parameters within a stock assessment framework, rarely consider 57 

misspecification of M (e.g. Punt, 2003; Kraak et al., 2008; Punt et. al. 2008).  58 

 59 

The single value of M used in many stock assessment models must be taken to represent 60 

an averaging of the natural mortality rates for individuals of a species above a minimum 61 

age. The averaging occurs over variations with age and time, across space and between 62 

the sexes. The reality that M varies with time, age, sex and cohort, and due to 63 

environmental conditions, predation, and inter- and intra-specific competition, makes 64 

estimation even more difficult. However, the data rarely exist to estimate the variation in 65 

even some of these directions (Vetter 1988). Thus, most statistical catch-at-age stock 66 

assessments assume a constant M, or, at most, include some variability across age or 67 

length and/or differences between the sexes. While Lorenzen (2000) and Gislason et al. 68 
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(2010) provide compelling arguments for having M vary with age, the data available to 69 

estimate even a single, time- and age-invariant M are subject to a number of errors and 70 

uncertainties. These include ageing error and bias, which can lead to quite poor estimates 71 

of M (e.g. Beamish, 1979), uncertainty in fishery and survey selectivity (particularly in 72 

the case of dome-shaped selectivity, for which the estimate of the drop-off in selectivity 73 

with age can be highly correlated with the estimate of M), and uncertainty in catch levels 74 

and the fishing mortality rate (F) over time. Variance and bias in otolith-based ageing 75 

tends to increase with fish age, especially for those fish that essentially stop growing past 76 

a certain age or size, resulting in annuli which are extremely narrow and difficult to 77 

identify (Chilton and Beamish, 1982; Campana, 2001). Bias in ageing can lead to poor 78 

understanding of fish population dynamics (Yule et al. 2008). Fishery and survey 79 

selectivity can peak at an intermediate size or age, decreasing afterwards due to 80 

ontogenetic movement into areas that are more difficult to fish, or due to physiological 81 

changes allowing larger fish to escape capture. However, estimating the degree of 82 

reduced (dome-shaped) selectivity is also difficult due to correlation of the rate of decline 83 

in selectivity with age with M and other parameters (including steepness (h), catchability 84 

(q) and F), and the fact that selectivity itself is often time-varying. Finally, it can be 85 

difficult to decompose the total mortality rate into its natural and fishing-related 86 

components (Aenes et al., 2007).  87 

 88 

Estimating M within stock assessment models is difficult and often ill-advised due to the 89 

issues raised above. Simulation analyses using a statistical catch-at-age model found that 90 

estimation of M was relatively accurate when age data and index data were available 91 
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from the beginning of significant fishing, h and selectivity parameters were known, and 92 

the stock was fished down to a relatively low level during the period of the data 93 

(Magnusson and Hilborn 2007). However, these are considerable and generally 94 

unachievable caveats. Similarly, Thompson (1994) found that right-hand selectivity is 95 

more accurately estimated when M is known. Simulation analyses for MSEs, in contrast, 96 

often assume that M is known exactly (e.g. Magnusson and Hilborn, 2007; Punt et al., 97 

2008). However, getting M wrong in a full age-structured forward projection model can 98 

result in quite incorrect impressions of stock status (Clark, 1999).   Misspecification of M 99 

can also lead to large biases and spurious time trends when using cohort analysis or 100 

virtual population analysis (VPA) (Mertz and Myers, 1997).  101 

 102 

To avoid the pitfalls of trying to estimate M either directly from data or within a model, a 103 

number of meta-analytical approaches have been developed over the years. These 104 

methods use relationships between M and other life-history parameters which are 105 

ostensibly easier to estimate. While the methods are generally empirical, they are rooted 106 

in life history and evolutionary theory (e.g. Roff, 1984; Charnov, 1991; Charnov and 107 

Gillooly, 2004; Charnov et al., 2013). Often these approaches use a single independent 108 

parameter in the meta-analysis, although multiple regression analysis has been applied as 109 

well (e.g. Pauly, 1980). Meta-analyses have found relationships between M and 110 

maximum age (Amax; Hoenig, 1983; Beverton, 1992), age at maturity (Am; Jensen, 1997), 111 

von Bertalanffy growth parameter k (Beverton and Holt, 1959; Jensen, 1996), and 112 

Gonadosomatic index (GSI), a measure of reproductive effort (Gunderson, 1997; 113 

Gunderson and Dygert, 1988), among others. McCoy and Gillooly (2008) developed a 114 
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theoretical model across species and taxa based upon the relationship of body size and 115 

temperature to the metabolic rate.   116 

 117 

Often, single point estimates from these meta-analyses have been used in assessments 118 

despite the generally fairly wide scatter of points around the regressions. While this wide 119 

scatter is due in part to error in both the particular covariate and in M, it is undoubtedly 120 

also true that a good deal is due to an imperfect relationship between the parameters in 121 

question. Alternative values of M are often considered in sensitivity analyses, but it is 122 

unlikely that these are capturing the full uncertainty associated with the meta-analysis.  123 

While Hewitt et al. (2007) provide ranges for M by looking a number of meta-analytical 124 

relationships and ranges of estimates of the associated meta-analytical covariates, no 125 

formal method of developing statistically based prediction intervals or prior distributions 126 

of M have been proposed. Here, the extent of uncertainty associated with the various 127 

meta-analyses is analyzed and methods of creating prediction intervals and priors on M 128 

are described. 129 

 130 

Gunderson et al. (2003) calculated confidence intervals for meta-analytical estimates of 131 

M from estimates of von Bertalanffy growth coefficient k (Jensen, 1996) and 132 

gonadosomatic index (GSI; Gunderson, 1997). They also reported point estimates 133 

without confidence intervals for Hoenig’s maximum age meta-analysis for predicting M, 134 

which is the most common method cited in US west coast stock assessments. However, 135 

confidence intervals give a range for the mean value of M across multiple hypothetical 136 

species or stocks with the same values for the covariate, rather than the potential range 137 
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for M in an individual species or stock. Confidence intervals are only appropriate for 138 

describing uncertainty in the dependent variable for a new observation of the independent 139 

variable(s) when all the variability about the regression line in the meta-analysis is due to 140 

error in the individual estimates of the dependent variable used in the regression – i.e. the 141 

relationship is exact. Prediction intervals are more commonly used for delineating the 142 

range of values that would be predicted to be observed for the dependent variable for a 143 

new observation of the independent variable, in this case for a new species or stock. 144 

Prediction intervals give an expected range for a new observation drawn from the same 145 

distribution as the original data.  146 

 147 

One important caveat regarding prediction intervals is that the original distribution 148 

around the regression usually includes both actual variability in the dependent variable 149 

around the regression line and estimation error in the original data, and therefore the 150 

prediction interval is possibly wider than the actual variation in the dependent variable 151 

about the regression line. Neither confidence nor prediction intervals are prefect for 152 

describing the uncertainty in a new estimate but here represent the bounds for possible 153 

intervals to describe uncertainty in M, assuming no bias in the original analysis. If all the 154 

variation in points around the regression is due to unbiased error in estimation of M in the 155 

data used for the meta-analysis, then the confidence interval provides the best estimate of 156 

uncertainty in M for a new stock given the covariate. If all of the variation around the 157 

regression is due to actual variation around the relationship, then the prediction interval is 158 

the best representation of that uncertainty. The truth is undoubtedly in between these two 159 

extremes, although there is likely some bias in the original data as well, which argues for 160 
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the use of a prediction interval which is more likely to be wide enough to compensate for 161 

such bias. 162 

 163 

This paper describes a method for developing priors from individual or combined meta-164 

analyses, based upon prediction intervals, which implicitly implies the assumption that 165 

there is variation in the meta-analytical relationships themselves..  Examples of 166 

application to individual species are provided.  167 

 168 

Methods 169 

For each of the five meta-analyses considered, I re-analyzed the original data to calculate 170 

uncertainty estimates along with point estimates of M. In doing so, I reconsidered the 171 

form of the regression. In the original analyses, Hoenig (1983), Pauly (1980) and McCoy 172 

and Gillooly (2008) used log-log regression, while Gunderson (1997) did not transform 173 

the data before regression. Jensen (1996) performed linear regression in both real and 174 

log-transformed space and concluded that the higher R
2
 for the regression in 175 

untransformed space (0.77 vs. 0.65) indicated that the regression in untransformed space 176 

was superior. In reality, of course, one cannot make that comparison across 177 

transformations as log-log regression has an underlying assumption of the presence of 178 

heteroscedasticity in the original data. 179 

 180 

For the three meta-analyses based on a single covariate, I performed four regressions for 181 

comparison, and to provide analyses similar to the original articles. These include: simple 182 

linear regression, simple linear regression forced through the origin, log-log regression, 183 
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and log-log regression with slope forced to be 1 (or -1 for Hoenig’s method). Given the 184 

form of the heteroscedasticity in M, log-log regression is clearly more appropriate than 185 

regression in untransformed space. For the three univariate meta-analyses, the prior 186 

distributions are based upon the log-log regressions with slope forced to be unitary. This 187 

makes the relationship linear in real space, which is in line with the theoretical 188 

relationships. None of the slopes in the log-log regressions is significantly different from 189 

1 (in absolute value). 190 

 191 

For Hoenig’s maximum age method, the maximum age and the natural mortality rate data 192 

for 82 stocks from Hoenig (1982) were used. I assumed a simple linear relationship in log 193 

space (log-log relationship), with a slope (exponent in real space) of -1, since M and 194 

maximum age should be inversely proportional and in the original analysis (Hoenig, 195 

1983) the values of this exponent were not significantly different from -1 for either fish 196 

or all species combined.  197 

 198 

For Jensen (1996) and Gunderson (1997), I assumed a log-log relationship as well. Since 199 

M is positively correlated with both k and GSI, this forces the relationship through the 200 

origin (in real space), which is desirable. The regressions were forced to have a slope of 1 201 

in log space (making them linear in real space).  202 

 203 

For Pauly (1980), the data on growth rate (k), temperature and either asymptotic mass or 204 

asymptotic length were used, a log-log(-log-log) relationship was assumed, and the full 205 
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variance-covariance structure was considered in determining the uncertainty for each 206 

predicted point. 207 

 208 

For McCoy and Gillooly’s (2008) data, the theoretical relationship relates dry mass m and 209 

temperature T (°K) to biological rate process: M should be dependent on m (dry wt in 210 

grams) and T (Kelvin). Rearranging and simplifying their resulting equation for fish: 211 

            (1) 212 

, or equivalently, lnM = c + a lnm + b/T. Thus a log-log(-log) relationship is assumed, and 213 

the full variance-covariance structure was considered in determining the uncertainty for 214 

each predicted point as with Pauly’s method. The parameter a is theoretically near -0.25, 215 

and b is near -7,000 (the activation energy of heterotrophic respiration (~0.6 eV) divided 216 

by Boltzmann’s constant (0.0000862 eV T
-1

, where, again, T is in degrees Kelvin)). 217 

Weight data is converted to dry mass by dividing by 4, as was done in McCoy and 218 

Gillooly (2008).  219 

 220 

Uncertainty intervals are calculated using the residual mean squared error (MSE) about 221 

the regression and the equations for the standard error sc around the regression line (for 222 

confidence interval calculation; Zar, 1996), where: 223 

           (2) 224 

 For regular linear regression (in real or transformed space), for any given Xh:  225 

           (3) 226 

 227 

For linear regression forced through the origin (in real or transformed space); 228 
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           (4) 229 

 230 

And for linear regression with fixed slope (in real or transformed space);   231 

           (5) 232 

 233 

For all of the above cases, the standard deviation sp around regression line (to be used for 234 

prediction interval calculation) is: 235 

           (6) 236 

The interval itself is calculated as: 237 

               ,     (7) 238 

where α is the confidence level, df = degrees of freedom, and s can be sc or sp as 239 

appropriate. Here, I calculate confidence and prediction intervals for the five meta-240 

analytical methods described above. Three involve direct use of the above equations, 241 

whereas the two multivariate meta-analyses involve variance-covariance matrices. All 242 

calculations were conducted using the R programming language (R Development Core 243 

Team, 2010).  244 

 245 

Priors 246 

Along with prediction intervals, the above analysis provides log-normal distributions 247 

which can be taken as priors on M for the new species or stock of interest. Strictly 248 

speaking, as described above for prediction intervals, the prior is on a new observation of 249 

M, given all the error and bias in the original sample for the meta-analysis. However, we 250 
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will take it to be a prior on M, noting that the meta-analyses should be redone with 251 

currently available estimates of M and the related life-history correlates. 252 

 253 

Given multiple such priors, the question is how to combine them. Under the assumption 254 

that each prior gives unique and orthogonal information from the others, the normal 255 

priors (in log space) could all be multiplied together and standardized to give a new log-256 

normal prior. Combining normal priors results in a prior with the inverse-variance 257 

weighted mean of the individual prior means and with variance equal to the inverse of the 258 

sum of the inverse variances (which equals the harmonic mean of the variances divided 259 

by n). If, on the other hand, the individual meta-analyses are actually providing the same 260 

information (for example, due to  complete overlap of data sources, and correlation 261 

among the different covariates) , they should all be averaged (via multiplying n normal 262 

priors together, all to the power n
-1

) , as one would for multiple observations of a single 263 

quantity of interest. This is equivalent to giving a weight of 1/n to each of the priors. The 264 

resulting combined mean µ and variance σ
2
 can be calculated as follows: 265 

 266 

            (8) 267 

 268 

           ,     (9) 269 

 270 

where the wis are the assigned weights for each normal prior, as described above (or all 271 

1s when assuming independence). 272 
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In any particular case weighting should be done based upon overlap in data and 274 

covariates, knowledge about correlation of parameters, and confidence in the application 275 

of the prior to the species in question (i.e. does the relationship between the covariate(s) 276 

and M vary by taxonomic group, and is the meta-analysis representative of the taxon in 277 

question).  278 

 279 

Here, I make the assumption that the meta-analyses based upon Maximum Age and GSI 280 

are independent of each other and the other meta-analyses, as I found no evidence of 281 

overlapping data sources. Pauly’s meta-analysis (based on k, W and T) and Jensen’s 282 

(based on k), however, use the same data set. McCoy and Gillooly (using W and T) use 283 

Pauly’s 175 data points along with an additional 59 data points. Thus, these cannot be 284 

said to be independent – even Jensen and McCoy and Gillooly which use different 285 

covariates are not independent given the use of the overlapping data on M itself. 286 

Additionally, the relationship between k and M varies by taxon, and is quite different for 287 

Pacific Sebastes species than for most fish species (Beverton, 1992). Therefore, at least 288 

for Pacific Sebastes, the meta-analyses using k should be downweighted further, or 289 

simply not used.  290 

 291 

Given that the analysis performed by Pauly (1980) included additional informative 292 

covariates, I simply do not use the relationship based upon k alone when data on 293 

temperature and maximum size are available. Thus Jensen’s method is not used if Pauly’s 294 

method is used. Jensen’s method is also not used for Pacific Sebastes species. When 295 

Jensen’s method is used (when data on k are available but size and/or temperature data 296 
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are not), it is given a weight of 1. Given the different functional forms in the meta-297 

analyses of Pauly (1980) and McCoy and Gillooly (2008) and their incomplete overlap of 298 

data, they are each assigned weights of 0.75 if both are used, reflecting an intermediate 299 

state between being completely independent (weights of 1 each) and providing identical 300 

information (weights of 0.5 each). If data on weight and temperature but not k is 301 

available, then McCoy and Gillooly’s method is given a weight of 1, since Pauly’s (and 302 

Jensen’s) method then lacks the necessary covariate information. The other two methods 303 

(Hoenig’s and Gunderson’s) are always given weights of 1 when used. When both the 304 

weight- and length-based Pauly multiple regressions are used, they each get half the 305 

weight that just one would be given (i.e. the same total weight as just using one, as really 306 

the same information is being produced). Other weighting schemes could be considered. 307 

 308 

Examples 309 

In practice, we often do not have all of the information necessary to calculate all of the 310 

meta-analytical estimates of M described above, along with their related intervals and 311 

priors. Three flatfish species from the northeast Pacific Ocean, English sole (Parophrys 312 

vetulus), rex sole (Glyptocephalus zachirus) and Petrale sole (Eospetta jordani), are used 313 

as examples for developing priors on M.   314 

 315 

Results 316 

While the results of the alternative regression assumptions for Hoenig’s, Jensen’s and 317 

Gunderson’s methods are shown in Table 1, it is only the log-log regressions that are 318 

considered appropriate given the form of the heteroscedasticity in the data. The equations 319 
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describing the median point estimates for these three methods using the preferred log-log 320 

regression with the slope forced to be 1 (or -1, for Hoenig’s method) are as follows: 321 

Hoenig’s method:          (10) 322 

 323 

Jensen’s method:          (11) 324 

 325 

Gunderson’s method:          (12) 326 

 327 

These are similar to the published values in all three cases. For Hoenig’s method, the 328 

exponent on AMax, estimated in Hoenig (1983) to be -1.01, has here been forced to be -1, 329 

but the numerator is similar (4.33 vs. 4.37 here); Gunderson (1997) used linear regression 330 

in real space forced through the origin, and found a coefficient of 1.79 vs. 1.82 here; 331 

Jensen (1996), also conducting the regression in real space and forced through the origin, 332 

reported a coefficient of 1.6 instead of the 1.75 estimated here (though the regression in 333 

real space forced through the origin in Table 1 gives the identical value of 1.6).  334 

 335 

While the log-log regressions with slope estimated could be used as well, their similarity 336 

to those with slope forced to 1 (or -1), the simplicity in interpretation and in calculation 337 

of point estimates given the resultant linearity in real space, and the correspondence with 338 

the life-history theory makes the use of the log-log regressions with slopes forced to be 1 339 

(or -1) more appealing.  340 

 341 

MaxA
M

374.4


kM 753.1

GSIM 817.1
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The data used, regression fits (transformed back into real space) and resultant confidence 342 

and prediction intervals for the three univariate meta-analyses are show in figures 1, 2 343 

and 3. In Table 1, note that for all three methods, the simple linear regressions provide 344 

positive intercepts, so that if these were used, all point estimates from these methods 345 

would be larger than those values. This is particularly unrealistic for Hoenig’s and 346 

Jensen’s methods for which the intercepts are above M = 0.2. This is another reason for 347 

rejecting the regressions in real space. 348 

 349 

For the two meta-analyses relying upon multivariate relationships (Pauly 1990, McCoy 350 

and Gillooly 2008), the resultant relationships are as follows (and in Table 2): 351 

Pauly with W∞:            (13) 352 

Pauly with L∞:          (14) 353 

In both cases the exponents are nearly identical to those reported in Pauly (1980).  354 

For the meta-analysis based upon the work of McCoy and Gillooly, the estimated 355 

relationship is: 356 

           (15) 357 

Or, in their formulation: 358 

           (16) 359 

Where K is Boltzmann’s constant and                   . This compares to the value from their 360 

paper, with E fixed at 0.65:  361 

           (17) 362 

In Equation14, the estimated exponent on dry mass (-0.276) is slightly larger in 363 

magnitude from McCoy and Gillooly’s (2008) theoretical -0.25 or estimated -0.27, while 364 
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E (the average activation energy of heterotrophic respiration) is estimated to be 0.532 eV, 365 

slightly below the value of 0.6-0.7 eV suggested by Gillooly et al. (2001, 2005).  366 

 367 

The life-history covariates and resultant priors for M for the three flatfish species are 368 

given in Table 3. Figure 4 shows the individual and combined priors in transformed and 369 

real space for petrale sole, for illustration. For both rex and petrale soles, the combined 370 

prior is based upon the reanalyzed methods of Hoenig, Pauly and McCoy and Gillooly. 371 

For English sole, the combined prior includes the prior based upon Gunderson’s method 372 

as well.  373 

 374 

Discussion 375 

The natural mortality rate M is a very important parameter in fisheries stock assessment 376 

and management. The subject is expounded upon in Beverton and Holt (1957), and has 377 

remained an important issue over the intervening half-century. However, M remains a 378 

very difficult parameter to estimate. Given the move to account for stock assessment 379 

uncertainty in setting harvest limits in the United States (Ralston et al., 2011), it is 380 

especially important to incorporate the uncertainty in life-history and harvest parameters 381 

in stock assessments through the use of priors or by developing ranges such as prediction 382 

intervals to guide sensitivity analysis.   383 

 384 

Meta-analytical approaches are simple methods allowing the use of large amounts of 385 

related data to predict M. While there are many different approaches relate M to other 386 

parameters in addition to the ones reanalyzed above (Vetter, 1988), none of them are 387 
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fundamentally better than the ones explored here. While meta-analytical approaches often 388 

provide the only or best estimates of M and are based upon life-history theory, these 389 

estimates remain highly uncertain. The log-log regressions used here provide linear 390 

relationships between M and the covariates, while acknowledging the multiplicative 391 

nature of M, and the reality that the absolute uncertainty in M increases with M.  392 

 393 

While the method for producing priors focuses on a single M across ages, space and time, 394 

it could be used to calculate priors for multiple M values for a single species taking into 395 

account some of the factors which induce variability. However, even the reduced 396 

complication of a single M value does not eliminate the uncertainty in its value. Ideally 397 

one could estimate M by following year classes moving through the population within a 398 

stock assessment. However, the confounding of M with F, catchability (q) selectivity, 399 

spawner-recruit steepness (h) and ageing error usually makes this extremely difficult. 400 

Time varying q and selectivity can make this value even more intractable. Unfished 401 

areas, such as MPAs, could eventually provide improved data for calculating M and other 402 

life-history parameters (Garrison et al., 2011).  403 

 404 

The prediction intervals and priors developed here are based upon regression analyses 405 

which have the underlying assumption that the independent variables are known without 406 

error. Uncertainty and variation in the covariates violate this assumption. Since, for 407 

example, growth rate varies with environmental conditions (temperature, food 408 

availability) and competition, even a perfectly measured value at one time may not reflect 409 

the average growth rate nor, therefore, the average M. Ageing and age validation methods 410 
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have improved greatly over recent years (e.g. Campana, 2001, Hamel et al. 2008), and for 411 

some species the estimate of maximum age has changed greatly due to changes in ageing 412 

method (e.g. for Pacific ocean perch (Sebastes alutus); Chilton and Beamish, 1982). 413 

While the large biases in estimates of maximum age have been addressed, the smaller 414 

issue of uncertainty in both the “independent” and “dependent” variables could be 415 

addressed through an “errors-in-variables” or “functional regression” approach. However, 416 

this requires knowing or assuming the level of error (or relative error) in the independent 417 

variables, and becomes especially intractable for multiple regression approaches. Here 418 

taking that approach for the univariate regressions might provide a slightly better estimate 419 

of the slope of the regression, if it were not fixed at 1 or -1, and might provide a better 420 

estimate of the prediction interval given perfect knowledge of the covariate value for the 421 

stock for which M is being estimated. However, since uncertainty in that covariate would 422 

have to be accounted for in the final calculation of the prediction interval and prior, this 423 

approach would simply add multiple new layers of calculation and uncertainty, without 424 

any obvious benefit.  425 

 426 

Gunderson et al. (2003) did calculate confidence intervals taking into account the 427 

uncertainty in the values of the covariates that they were using to predict M, but not for 428 

the data in the original regression analysis. These confidence intervals are indeed slightly 429 

wider than those that do not consider the error. However, since the regressions they used 430 

were not functional regressions, all variability in the covariate would have been 431 

accounted for in the standard error about the regression line, and in a sense adding in the 432 
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uncertainty in the covariate again is double counting this uncertainty. A larger issue is 433 

their use of confidence intervals rather than prediction intervals.  434 

 435 

There are many approaches to modeling the process of natural mortality. Simple models 436 

have been developed to relate the process of survivorship and mortality to a few 437 

parameters that can be related to environmental factors, pressures, etc. (e.g. Anderson, 438 

2000; Salinger et al., 2003). More complex models may address how natural mortality in 439 

a species or stock changes adaptively over time given fishing pressure (Mangel et al., 440 

2007). One could question how “natural” M is for certain species given adaptive pressure 441 

on that and other parameters due to fishing pressure. The main purpose of this paper, 442 

however, is to provide prior information M for use in stock assessment. This should 443 

include current or recent M, but could include analyses of data from earlier periods for 444 

comparison or even use. 445 

 446 

Ageing bias and other factors resulted in some of the data on M  in the cited meta-447 

analyses being relative far off from what we would now believe, and new methods mean 448 

that improvements could be made to the underlying data for the meta-analyses (e.g. Then 449 

and Hoenig, this volume). The methods developed here can be used with any appropriate 450 

data set, and the data used here could certainly be improved. Another issue that should be 451 

further addressed is which of these meta-analyses apply to which taxa, and how to limit 452 

the data to make it applicable to various groups of taxa (as in Beverton, 1992). 453 

 454 
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The ability to create priors on M and use them to conduct full Bayesian assessments 455 

allows one to more fully quantify the uncertainty in stock assessments associated with M 456 

(and other parameters). Even using prediction intervals to define the range of M for 457 

sensitivity analyses is an improvement over using ad-hoc values for that range. A 458 

combined prediction interval can be calculated from the combined prior for that purpose. 459 

In producing these priors and prediction intervals, one can use as many meta-analyses as 460 

for which you have good estimates of the covariates and for which the meta-analyses are 461 

deemed appropriate for the species in question.  462 

 463 
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 623 
Figure 1. Hoenig’s maximum age and M data with 95% confidence and prediction 624 

envelopes.  625 

 626 

 627 
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 628 
Figure 2. Gunderson’s GSI and M data with 95% confidence and prediction envelopes. 629 

 630 

 631 
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 633 
Figure 3. Jensen’s k and M data with 95% confidence and prediction envelopes.  634 

 635 

 636 
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 637 
Figure 4. Priors and combined prior in log space and their equivalents in real space for 638 

petrale sole (Eopsetta jordani), using the inputs in Table 3.  The dotted and dashed lines 639 

are the priors for each individual meta-analysis (including the two versions for Pauly’s 640 

method), while the solid line is the combined prior, based upon weighting the individual 641 

priors as described in the text. There is no GSI data for petrale sole, so there is no prior 642 

for Gunderson’s method.  Jensen’s prior is shown although it is given no weight in the 643 

combined prior.  644 
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 663 

Table 1. Coefficients (and standard errors) from linear, linear forced through the origin, 664 

log-log (LL), and log-log with slopes forced to be 1 (or -1) regressions for the three meta-665 

analyses based upon a single life-history covariate. “Log inter” and “Log slope” refer to 666 

the intercept and slope for the log-transformed variables.  667 

 668 

Method Regression Log inter Log slope Intercept slope 

Hoenig 

M vs. Max 

Age*;  

n = 82 

Linear - - 0.31 (0.05)  2.35 (0.21) 

Linear origin - - 0 3.30 (0.19) 

LL 1.52 (0.17) -1.02 (0.07) - - 

LL slope=-1 1.48 (0.06) -1 0 4.37 (0.25) 

Jensen 

M vs. von 

Bertalanffy 

k; n = 175 

Linear - - 0.21 (0.05) 1.45 (0.06) 

Linear origin - - 0 1.60 (0.05) 

LL 0.50 (0.08) 0.95 (0.05) - - 

LLslope=1 0.56 (0.05) 1 0 1.75 (0.08) 

Gunderson 

M vs. GSI; 

n = 28 

Linear - - 0.041 (0.036) 1.64 (0.18) 

Linear origin - - 0 1.80 (0.12) 

LL 0.49 (0.27) 0.95 (0.12) - - 

LLslope=1 0.60 (0.08) 1 0 1.82 (0.15) 
* The linear regressions for Hoenig’s method are M vs. 1/MaxAge, as is the reported transformation for the  669 
log-log regression with slope -1.  670 
 671 

 672 

Table 2. Results of multiple log-log regression for meta-analyses based upon 2 or 3 673 

covariates. Coefficients (and standard errors) are all in natural log space except for 674 

McCoy and Gilloly Temperature, parameterized as 1/
°
K rather than as °C as in Pauly. 675 

Method Intercept Weight, 

Length or Mass 

von 

Bertalanffy k 

Temperature 

Pauly (weight) -0.49 (0.24) -0.082 (0.022) 0.676 (0.072) 0.464 (0.083) 

Pauly (length) -0.02 (0.26) -0.277 (0.066) 0.655 (0.072) 0.465 (0.081) 

McCoy and 

Gillooly (mass) 

22.1 (1.5) -0.276 (0.015)  -6,173* (427) 

*Linear in real space, and parameterized as 1/
°
K  rather than °C 676 

 677 

Table 3. Results of analyses for English sole (Parophrys vetulus), rex sole 678 

(Glyptocephalus zachirus) and petrale sole (Eopsetta jordani). Log mean M and Log sd 679 

refer to the average and standard deviation of  ln M. 680 

Species Amax GSI k L∞ W∞ T Log 

mean M 

Log 

sd 

Median 

M  

Mean 

M  

English 23 0.18 0.36 40.56 596 8 -1.22 0.28 0.295 0.307 

Rex 29  0.39 41.82 489 7 -1.41 0.36 0.245 0.261 

Petrale 32  0.16 54.31 2400 6 -1.80 0.36 0.166 0.177 

 681 
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