Data-limited models for informing groundfish management

Jason Cope
E.J. Dick
Alec MacCall
Chantell Wetzel

10 June, 2014

Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.
90+ species
Longevity: 5-200+

Fishery

- Lat. range: 32°-49° N
- Multiple factors
 - States
 - Sectors
 - Vessels
 - Gear types
- Data
 - Types
 - Quality
 - Quantity
Limitations to conducting stock assessments

- #/diversity of stocks
- Data availability
- Large stock ranges
- Trained analysts
- Reviewers
- Council time
- Maintaining “current” assessments
- General funding
Informing catch limits

<table>
<thead>
<tr>
<th>Stock category</th>
<th>Default OFL uncertainty</th>
<th>Affiliated assessment type</th>
<th>Data types</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\sigma=0.36$</td>
<td>Statistical Catch at Age</td>
<td>Catch, detailed life history, indices, length/age comps.</td>
</tr>
<tr>
<td>2</td>
<td>$\sigma=0.72$</td>
<td>Index-based methods</td>
<td>Catch, basic life history, abundance indices</td>
</tr>
<tr>
<td>3</td>
<td>$\sigma=1.44$</td>
<td>Catch-only</td>
<td>Catch, basic life history</td>
</tr>
</tbody>
</table>

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 4
Timeline and context

Years of the Groundfish FMP

Groundfish Fishery Management Plan implemented
- Low data, simple methods (avg catch, YPR, VPA, SRA)
- SS1, average catches for other stocks
- Rogers “ABC = M*B_{avg}” applied to some “remaining rockfish”
- SS2+, average catches for other stocks
- DCAC
- DB-SRA; MSA requirement to end overfishing, set ACLs
- First data-limited methods review panel: DB-SRA and SSS
- Data-limited methods review panel: XDB-SRA and XSSS
- First data-moderate STAR panel: XDB-SRA and XSSS for
- Continued research (e.g., status prior) on data-moderate methods
Methods: Depletion-Corrected Average Catch

DCAC

Sustainable Yield Calculated as:

\[Harvest = \frac{\sum Catch}{n + \left(\frac{\Delta}{B_{MSY} \cdot B_0 \cdot \frac{F_{MSY}}{M} \cdot M} \right)} \]

where:

- \(n \) is the number of years,
- \(\Delta \) is the relative stock status to starting conditions (\(\Delta = 1 - \text{depletion} \)),
- \(\frac{B_{MSY}}{B_0} \) is the relative stock size where maximum sustainable yield (MSY) occurs,
- \(M \) is natural mortality, and
- \(\frac{F_{MSY}}{M} \) is the ratio of the fishing mortality rate associated with MSY and natural mortality.

MacCall 2009
Methods: Depletion-Based Stock Reduction Analysis (DB-SRA)

\[B_{t+1} = B_t + P_{t-a} - C_t \]

- Age at maturity
- Catch by year
- Population Model
- \(B_0 \)
- OFL
- MSY
- \(B_{MSY} \)

Dick and MacCall 2010, Dick and MacCall 2011
Simple and extended Stock Synthesis

SSS & XSSS

- Priors defined for M, h, and depletion
- Set-up SS files with catches and indices (XSSS)
- Solve for $\ln R_0$ and extra SD on indices (XSSS)

Note: Diagrams showing distributions of neutral mortality, steepness, and stock status.
Methods: SSS and XSSS protocol: estimation

- Priors defined for M, h, and depletion

\[N_{\text{final}} \]

SSS

Draw 1 value, solve \(\ln R_0 \)

[Histogram of variable]

SSS: Cope. 2013. Fish Res. 142: 3-14

exSSS: Cope et al. in review. Fish Res

XSSS

Draw \(N_{\text{init}} \); solve \(\ln R_0 \)

Draw \(N_x \); solve \(\ln R_0 \)

Calculate sample weights

Calculate entropy (E)

Weighted \(N_{\text{init}} \) redraw

\[E < T \]

\[E > T \]

Student’s-t mvtn = posterior

[Histogram of variable]

NOAA Fisheries
Extended/Depletion-based Stock Reduction Analysis (X/DB-SRA)

- **Common data** (Catch, indices)
- Selectivity = maturity
- Natural mortality
- Depletion prior
- Delay-difference
- Single-sex
- Growth: none (no SPR)
- Productivity: F_{MSY}/M; B_{MSY}/B_0

Extended/Simple Stock Synthesis (X/SSS)

- Age-structured
- Two-sex
- VBGF parameters
- Productivity: Steepness (h)
Applications

• 2010: DCAC or DB-SRA applied to 50 species/stocks.

• 2013: XDB-SRA and XSSS applied to 8 species in 2013

• 2015: More applications...
Ongoing research & development
Comparing parameterization: productivity

flatfish

rockfish
Improving inputs: parameters

Thorson et al. 2012

\[\frac{S_{B_{MSY}}/S_{B_0}}{F_{MSY}/M} \]

Zhou et al. 2012

Probability density for different species.

Hamel in review

Cope et al. in review

Depletion vs. Vulnerability graph.
Improving inputs: indices

- Commercial indices
 - GLMM software

- Recreational indices
 - No survey for nearshore stocks (yet)
 - Dockside sampling collects aggregated (trip-level) catch, effort, & location information
 - Created relational databases for OR & CA onboard CPFV observer programs (Monk et al., 2013, in press)
 - Analysis underway of drift-level data in relation to habitat data for state waters (Monk et al., in prep.)
Testing methods: Simulation testing

Wetzel & Punt 2011

Depletion Year

Testing methods: Simulation testing

Wetzel & Punt 2011

Wetzel and Punt in review

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 16
Performance of Data-Limited Models: “Precautionary” stocks (50-100% B_{MSY})

- Relative to average catch method, DCAC and DB-SRA reduce the probability of overfishing, while increasing or maintaining long-term yield.
- Dynamic methods further improve performance (e.g. XDB-SRA & XSSS).

Performance of Data-Limited Models: “Overfished” stocks (<50% B_{MSY})

- Reduction in POF is less dramatic when applied to severely depleted stocks
- Long-term yield is consistently higher than average catch
- Take-home message: simple models are easy to apply, and perform better than average catch

Comparing methods: BASI approach

rockfish

flatfish

roundfish

elasmobranch
Comparing inputs: BASI approach

Stock status

Cope et al. in review
Strengths

• Provide OFL and/or status when data limited
• Response: reactive to need for alternative analyses
• Increase throughput
 • Non-assessed stocks
 • Stocks previously assessed & of low priority
• Already applied in management
• Proactive
 • Improving methods
 • Better input priors
 • Modelling enhancements
 • Management applications
• Testing methods
 • Simulation testing
 • BASI comparisons
• Developing new methods
Challenges & Solutions

• Resource limitations remain
 ▪ Continued method exploration and development
 ▪ Target data collection (e.g., indices)

• Large uncertainty in catch recommendations
 ▪ Improve prior on model input values
 ▪ Increase data in assessment (e.g., 1 year length compositions)

• Which stock category to apply?
 • Constraining catch and more available data
 ▪ Prioritize “fuller” stock assessment

• MSA and data-limited toolbox
 ▪ Explicit recognition in MSA/National Standards
 ▪ “Living” TORs