Declining patterns of Pacific Northwest steelhead trout adult abundance and smolt survival in the ocean

Neala Kendall, Gary Marston, and Matt Klunagle
Washington Department of Fish and Wildlife
Understanding steelhead abundance and marine survival

• What are steelhead abundance & marine survival patterns?

• What environmental variables explain steelhead marine survival?
 • Do similar variables explain marine survival for steelhead from different regions?
 • Do similar variables explain steelhead and Pacific salmon marine survival?
Declining steelhead trout abundance in Puget Sound populations

• Are Puget Sound abundance & marine survival trends different than those in other regions?
• How have they changed over time?
• What environmental and fish characteristics are most related to marine survival trends?
Are marine survival trends spatially correlated among populations?

• For pink, chum, sockeye, Chinook, and coho salmon:
 – Mostly positive correlations across North Pacific Ocean—demonstrating general regional coherence
 – Closer populations are more tightly correlated—demonstrating local coherence

Pyper et al. 2001 CJFAS—pink salmon

What about for steelhead??
Abundance data from 34 wild pops

SAR data from 48 stocks/pops:

- Puget Sound:
 10 hatchery, 2 wild

- Strait of Juan de Fuca:
 1 hatchery, 5 wild

- Coast:
 11 hatchery, 2 wild

- Lower Columbia:
 12 hatchery, 4 wild

- Johnstone Strait:
 1 wild
Steelhead spawner abundance data
Abundances changes 1980s vs. 2000s

Puget Sound average = -53%
Strait of Juan de Fuca average = -34%
Washington coast average = -22%
Lower Columbia River average = -13%
Georgia Basin
Johnstone Strait average = -43%
West coast Vancouver Island

Percent abundance change from 1980s to 2000s
Steelhead marine survival trends

Photos by Morgan Bond
Hatchery & wild marine survival: smolt-to-adult return rates (SAR)

- Percent of smolts leaving freshwater that survival to return as adults

\[
\text{Smolt survival} = \frac{\text{# spawners/hatchery returns} + \text{# catch}}{\text{# smolts}}
\]

Photo: Morgan Bond
How to determine the best groupings?

Multivariate Auto-Regressive State-Space (MARSS)

• Fit models to time-series data using maximum likelihood, includes both process and observation error

• Does not require all data series to cover the same time period

• Provides statistical support for various population/stock groupings \rightarrow best-supported models determined by AIC_c
Steelhead marine survival by region

- Washington and Oregon coast
- Lower Columbia River
- Strait of Juan de Fuca
- Puget Sound and Keogh River
Marine survival correlation by distance
Range and strength of marine survival spatial synchrony

• Range:
 – Steelhead: 248 km (95% CI of 200-310 km)
 – Coho: 294 km, 217 km, Chinook: 1019 km, 497 km
 – Pink: 431 km, chum: 564 km, sockeye: “larger than for pink and chum”

• Strength:
 – Steelhead: 0.42 (95% CI of 0.37-0.48)
 – Coho: 0.84
 – Chinook: 0.44, 0.33
Steelhead marine survival time series—breakpoints
Steelhead marine survival summary

• Puget Sound steelhead marine survival has declined over time, especially low since early 1990s

• Puget Sound, Strait of Juan de Fuca, coast, and lower Columbia River steelhead have exhibited different marine survival trends

• Marine survival correlation by distance results support hypothesis that much of the marine mortality occurs during early marine life. Environmental conditions influencing marine survival have unique smaller-scale characteristics.

• Breakpoint analysis suggests different trends among groupings
Next steps (with Kathryn Sobocinski)

• Relating marine survival rates to environmental variables and fish characteristics

• Objectives:
 1.) Develop candidate indicators based on mechanistic understanding
 2.) Aggregate datasets that might be useful as indicators
 3.) Use a combination of statistical tools to evaluate candidate indicators and conduct a retrospective analysis of survival
 4.) Use indicators within a modeling framework to predict future survival (hopefully)

– To be of greatest use, indicators must summarize complex mechanisms and processes related to salmonid survival
Steelhead survival candidate indicators

- **Boundary conditions**
 - Freshwater (e.g., spring river discharge, temperature, turbidity)
 - Ocean (e.g., temperature, upwelling index, sea level)
 - Atmosphere/climate (multivariate ENSO index, wind speed/direction, PDO)

- **Salish Sea conditions**
 - Temperature, chlorophyll concentrations, turbidity, dissolved oxygen, etc.

- **Predators and competitors**
 - Forage fish, finfish, pinnipeds, birds

- **Salmon characteristics**
 - Abundance of outmigrants in the system, including hatchery releases
 - Timing of outmigration
 - Size/growth
Acknowledgements

• Many WDFW, tribal, and other biologists who have provided wild and hatchery smolt and adult data to estimate SARs

• Mark Scheuerell, Thomas Buehrens, Joe Anderson, Mara Zimmerman, Kathryn Sobocinski, and others for helpful conversations and insights

• Puget Sound steelhead early marine survival working group, including Michael Schmidt (Long Live the Kings)