A parasitic hyperiid amphipod acts as a trophic link between a large scyphozoan jellyfish and juvenile Chinook Salmon.

Jacob Weil
MSc Candidate
University of Victoria
Acknowledgements

- Dr. Francis Juanes
- Will Duguid
- Moira Gilbraith, DFO
- Andy Lamb
- Donna Gibbs
• Jellyfish abundances are increasing regionally throughout the world’s oceans

• Local populations are stable but variable

Ecosystem Roles for Gelatinous Zooplankton

- Trophic Dead End
 - Consume resources making them unavailable to higher trophic levels
Ecosystem Roles for Gelatinous Zooplankton

- Trophic Dead End
 - Consume resources making them unavailable to higher trophic levels

- Post-larval Facultative Associations
 - Walleye Pollock, California Smoohtongue, myctophids
Ecosystem Roles for Gelatinous Zooplankton

• Trophic Dead End
 • Consume resources making them unavailable to higher trophic levels

• Post-larval Facultative Associations
 • Walleye Pollock, California Smoohtongue, myctophids

• Direct Predation
 • Leatherback Sea Turtles, Spiny Dogfish, Atlantic Cod, Northern and Blue Rockfish → Mainly feeding generalists
 • Chum salmon
Ecosystem Roles for Gelatinous Zooplankton

- Trophic Dead End
 - Consume resources making them unavailable to higher trophic levels

- Post-larval Facultative Associations
 - Walleye Pollock, California Smoothtongue, myctophids

- Direct Predation
 - Leatherback Sea Turtles, Spiny Dogfish, Atlantic Cod, Northern and Blue Rockfish → Mainly feeding generalists
 - Chum salmon

- Other Salmon don’t feed directly on jellies, but do feed on...
 - Hyperiid amphipods
Ecosystem Roles for Gelatinous Zooplankton

• Trophic Dead End
 • Consume resources making them unavailable to higher trophic levels

• Post-larval Facultative Associations
 • Walleye Pollock, California Smoothtongue, myctophids

• Direct Predation
 • Leatherback Sea Turtles, Spiny Dogfish, Atlantic Cod, Northern and Blue Rockfish ➔ Mainly feeding generalists
 • Chum salmon

• Other Salmon don’t feed directly on jellies, but do feed on...
 • Hyperiid amphipods
Towanda, et al., 2007
<table>
<thead>
<tr>
<th>Year</th>
<th>Frequency of Occurrence (% of Stomachs)</th>
<th>Sample Size (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976 (Argue et al., 1986)</td>
<td>0.33</td>
<td>302</td>
</tr>
<tr>
<td>2014</td>
<td>38.0</td>
<td>123</td>
</tr>
<tr>
<td>2015</td>
<td>37.7</td>
<td>337</td>
</tr>
<tr>
<td>Year</td>
<td>Frequency of Occurrence (% of Stomachs)</td>
<td>Sample Size (n)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>1976 (Argue et al., 1986)</td>
<td>0.33</td>
<td>302</td>
</tr>
<tr>
<td>2014</td>
<td>38.0</td>
<td>123</td>
</tr>
<tr>
<td>2015</td>
<td>37.7</td>
<td>337</td>
</tr>
</tbody>
</table>

Phacellophora Abundance from Dive Surveys 1990-2015

\[R^2 = 0.3643, p<0.001 \]
1. Are Hyperia found in the gut contents of juvenile Chinook obtained from Phacellophora?
 • Look for evidence of jellyfish residence (nematocysts) in guts of Hyperia from Chinook.
Research Questions

1. Are Hyperia found in the gut contents of juvenile Chinook obtained from Phacellophora?
 - Look for evidence of jellyfish residence (nematocysts) in guts of Hyperia from Chinook.

2. Are Hyperia being preferentially consumed based on size/sex?
 - Compare size and sex frequency of Hyperia sampled by gastric lavage from Chinook stomachs and those from Jellyfish
Research Questions

1. Are Hyperia found in the gut contents of juvenile Chinook obtained from Phacellophora?
 - Look for evidence of jellyfish residence (nematocysts) in guts of Hyperia from Chinook.

2. Are Hyperia being preferentially consumed based on size/sex?
 - Compare size and sex frequency of Hyperia sampled by gastric lavage from Chinook stomachs and those from Jellyfish

3. How long after leaving the medusa does evidence of Phacellophora remain in Hyperia?
 - Maintain Hyperia in the lab separate from the jellyfish to determine how long nematocysts remain in the gut
<table>
<thead>
<tr>
<th>Observed in 84% of individuals</th>
<th>Found in stomach after 106 hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Chinook Stomach</td>
<td>From P. camtschatica</td>
</tr>
</tbody>
</table>
Length Distribution

Phacellophora Hyperia

Cephalothorax Length (mm)
Frequency
0 200 400 600 800 1000
 0−1 1−2 2−3 3−4 4−5 5−6 >6

Chinook Hyperia

Cephalothorax Length (mm)
Frequency
0 10 20 30 40
 0−1 1−2 2−3 3−4 4−5 5−6 >6

Cephalothorax Length (mm)

Phacellophora Hyperia

n = 2568

Chinook Hyperia

Cephalothorax Length (mm)

n = 70
Sex Ratios

From Phacellophora: 1.1:1

From Chinook: 10.7:1
Conclusions

- *Phacellophora camtschatica* have increased in abundance
Conclusions

• *Phacellophora camtschatica* have increased in abundance

• *Hyperia medusarum* appear to be a more important prey item for juvenile Chinook than historically
Conclusions

• *Phacellophora camtschatica* have increased in abundance

• *Hyperia medusarum* appear to be a more important prey item for juvenile Chinook than historically

• Hyperia eaten by Chinook are coming from Phacellophora
 • Trophic and energetic link between Jellyfish and Chinook
Conclusions

• *Phacellophora camtschatica* have increased in abundance

• *Hyperia medusarum* appear to be a more important prey item for juvenile Chinook than historically

• Hyperia eaten by Chinook are coming from Phacellophora
 • Trophic and energetic link between Jellyfish and Chinook

• Size and sex of Hyperia differ in Chinook diet and on jellyfish
Conclusions

- *Phacellophora camtschatica* have increased in abundance

- *Hyperia medusarum* appear to be a more important prey item for juvenile Chinook than historically

- Hyperia eaten by Chinook are coming from *Phacellophora*
 - Trophic and energetic link between Jellyfish and Chinook

- Size and sex of Hyperia differ in Chinook diet and on jellyfish

- Nematocysts remain in Hyperia stomachs for some time
Implications/Next Steps

• Positive?

...But need to know more about prey quality
Implications/Next Steps

• Positive?

• Bad news? Second class prey in quality limited environment

• Other Players (e.g. Hyperia, Hyperoche, Themisto, Primno (Beamish et al. 2016))
Questions?