Northwest Fisheries Science Center

Monster Seminar JAM

Event Information

Monster Seminar JAM - Microarray analysis in environmental monitoring

Presentator(s):
Dr. Nancy Denslow, Department of Physiological Sciences, University of Florida

More Information:
Abstract
Microarray technology is a relatively novel tool that can be used as an aid to risk assessment for environmental monitoring. We have developed and used microarrays for largemouth bass to evaluate contaminated field sites. Organochlorine pesticide (OCP) contamination of the north shore of Lake Apopka originated with agricultural practices in the muck farms which received multiple yearly applications of high concentrations of DDT, methoxychlor, dieldrin, toxaphene, chlordane, among others. While this practice ended in the 1970's, sediments are still highly contaminated and have resulted in bird mortality and poor fish reproduction. To study the role of sediment contamination on reproductive success, largemouth bass were introduced into a mesocosm built in the contaminated area for 3 months and developed tissue burdens up to 20 parts per million (by wet weight) and altered gene expression patterns by microarray analysis. We have evaluated a large number of physiological and molecular endpoints to study individual effects of p,p-DDE, methoxychlor (MXC), dieldrin (DIEL) and toxaphene (TOX) in largemouth bass administered the OCPs in their diets to achieve similar body burdens. Each of these OCPs activates distinct biochemical pathways that lead to dysfunction of reproduction at different points in the HPG axis. P,p-DDE and MXC act both as antiandrogens and estrogens in gene expression experiments, with p,p-DDE functioning as a stronger antiandrogen of the two. DIEL appeared to have minimal impact on sex hormone regulated pathways, but instead was more active in the brain, affecting genes and proteins normally associated with Parkinson's disease, Alzheimer's, DNA damage, inflammation, among others. TOX exposure also produced a unique expression pattern. The model compound ethinyl estradiol (EE2) appeared to be bio-concentrated from the diet and gene expression patterns varied widely with dose applied. Changes in gonadal histology after exposure in the feeding study suggest major alterations to the reproductive system. We also examined ex vivo gonadal steroidogenesis for all the test compounds, and found that exposure to EE2 lowered E2 synthesis in females, but not in males. In vivo TOX, p,p-DDE, MXC or EE2 exposure in males prevented increased testosterone synthesis in response to gonadotropin stimulation. Ex vivo MXC and TOX exposure caused concentration-dependent decreases in basal and stimulated estradiol synthesis, respectively. These studies begin to explain the biochemical basis for the complex changes seen in the field and are a first step at understanding the effects of mixtures of OCPs on fish reproduction.

Location:
NWFSC  Map to NWFSC
2725 Montlake Blvd. E.
Seattle,  WA  98112

Date and Time:
Thursday, February 17, 2011, 11:00 am - 12:00 pm

Contact Person(s):
Diane Tierney
206-860-3380
send email

NWFSC Monster Seminar JAM
206-860-3408
send email