Northwest Fisheries Science Center

Turning the high beams on ocean acidification

NOAA funds shellfish farmers and scientists to expand Pacific Coast monitoring with $1.4 million over three years Contributed by NOAA’s Ocean Acidification Program January 2015

NOAA is providing a grant of $1.4 million over three years to help shellfish growers and scientific experts work together to expand ocean acidification (OA) monitoring in waters that are particularly important to Pacific coast communities, such as in oyster hatcheries and coastal waters where young oysters are grown.

Shellfish growers, hatchery owners and scientists will work together to strengthen their understanding of and ability to adapt to the impacts of ocean acidification on the Pacific Coast of the US, including Alaska. Carbon dioxide (CO2) emissions from the burning of fossil fuels, which are being absorbed by the ocean, are causing a change in ocean chemistry which has already been detected along this coast.

While current efforts have been likened to lights on a car, this grant will help them ‘turn the headlights on high’ on ocean acidification by increasing the number of shellfish growers and hatchery owners that have the capacity to detect changes. This will be done by training more people how to monitor OA and encouraging them to work together in communities of practice, developing more accurate and affordable sensors to measure these changes, and making the data from these sensors readily accessible.

Meeting needs for accuracy and affordability

This project builds off prior research supported by Integrated Ocean Observing System (IOOS) in 2013, which allowed shellfish growers and scientists to not only begin to detect, but adapt to, this change in ocean chemistry by monitoring seawater coming in to hatcheries to inform decisions about their operations. The current project, supported by NOAA’s IOOS and Ocean Acidification Program, is funding researchers at the University of Washington and Oregon State University in addition to technicians at the Southern California, Central California, Pacific Northwest and Alaska regional associations of IOOS to make ocean acidification monitoring sensors more accurate and affordable.

“[A shellfish operation] is expensive when you consider the amount of infrastructure, the cost of labor, equipment, seed, and the uncertainty that any crop could fail. Having information about water quality may play a critical role in the success of the operation,” says Margaret Pilaro Barrette, Executive Director of the Pacific Coast Shellfish Growers Association, who serves as the liaison between the shellfish growers, hatcheries and the scientists on the project. “Durable and uncomplicated monitoring devices, that aren’t expensive, are needed [by those in the industry].”

Technology, science, and industry come together

Dr. Burke Hales, a Professor at Oregon State University who studies chemistry in coastal waters, has been working with shellfish hatchery operators for years to understand how to effectively monitor these changes. He is the scientific expert on this project and developed the ‘Burkalator’, a gadget that allows users to detect changes in seawater chemistry, by measuring temperature, salinity, and CO2. These monitors are currently used in hatcheries in California, Oregon, Washington, and Alaska. Dr. Hales said he is excited to develop monitoring devices that are more affordable and that anybody can learn to run, but also recognizes the importance of having technical experts locally to help troubleshoot.

Communities of practice centered around a monitoring technology like Burkalators, together with scientific experts and hatchery operators, can be found from Alaska to Southern California. The owner and operators at Alutiiq Pride Shellfish Hatchery in Seward, Alaska “are a phenomenal team,” says Ellen Tyler, Program Manager at Alaska’s regional Association, AOOS. This team raises oysters, geoducks, cockles, clams and scallops and is also doing research to see if blue and red king crab can be reared in the hatchery and then released in to the wild Alaskan waters. This work is extremely important seeing that studies have shown red king crab to be negatively impacted by acidification, species numbers have been declining, and Alaskan communities and high-latitude waters are highly vulnerable to ocean acidification.

Pacific Coast monitoring a model for the global community

In California, shellfish growers will be working with scientific experts, and the California’s two regional associations CenCOOS and SCCOOS to be able to “see a high CO2 event and take mitigating measures with their shellfish crops to lessen the negative impacts of ocean acidification,” says Aric Bickel, SCCOOS Program Manager. These groups are also aware that in California waters, acidification isn’t the only stressor shellfish farms have to contend with. Growers and the regional associations are also working to monitor and understand the impacts of other factors, such as nutrients used on agricultural and urban lands that end up in coastal waters and harmful algal blooms.

Dr. Jan Newton, Director of Pacific Northwest Association of Networked Ocean Observing Systems (NANOOS) and Washington Ocean Acidification Center co-Director, is leading the project. In Washington and Oregon, state funds are partially supporting regional technical experts for this work so that the federal dollars collectively go farther. She is excited about the potential for this approach to be exported to other regions like the U.S. East and Gulf Coasts and the global community such as through the Global Ocean Acidification Observing Network (GOA-ON).

“It is really exciting to have affordable technology, communities of practice, accessible data and a model that is exportable to the world,” she explains.



Multimedia

  • Tom, Diarama
    View images