Northwest Fisheries Science Center

Display All Information

Document Type: Journal Article
Center: NWFSC
Document ID: 1035
Title: Quantifying salmon-derived nutrient loads from the mortality of hatchery-origin juvenile Chinook salmon in the Snake River basin
Author: Dana R. Warren, Michelle M. McClure
Publication Year: 2012
Journal: Transactions of the American Fisheries Society
Volume: 141
Issue: 5
Pages: 1287-1294
DOI: 10.1080/00028487.2012.686950
Keywords: Salmon-derived nutrients, nutrient subsidies, stocking, Columbia River, marine derived nutrients, Chinook salmon
Abstract:

 Hatchery supplementation of anadromous salmon is extensive across the Pacific Northwest region with millions of juvenile salmon stocked annually. The influence of hatchery-origin fish as prey items in recipient ecosystems has been explored, but influences of these fish on broader stream nutrient dynamics has not been well-studied. Salmon-derived nutrients (SDN) associated with the mortality of adult anadromous salmon provide key subsidies to freshwater habitats. While a number of studies have estimated current and historic SDN loading from returning wild salmon, SDN contributions from the mortality of hatchery-origin juveniles (many of which die in the stream prior to emigration) remains largely unknown. We conducted a mass balance analysis of SDN input and export via hatchery activities (stocking and broodstock collection) in the Snake River watershed. Using Chinook salmon Oncorhynchus tshawytscha as a model species, we accounted for yearly SDN input (via hatchery-origin juvenile fish mortality) and export (via broodstock collections and presmolt growth) over 6 years (2002–2007) in the portion of the Snake River upstream from Lower Granite Dam accessible to anadromous fish. In the year with highest smolt mortality (2003), hatchery-origin smolt mortality provided a net input of SDN equivalent to approximately 8,100 returning adults. In the year with lowest smolt mortality (2004), hatchery activities collectively yielded a net loss of nutrients. Although the mass of SDN from hatchery-origin smolts may be presented in adult equivalencies, functional influences of SDN from hatchery smolt mortality are likely to differ. Salmon-derived nutrients from hatcheries enter food webs through largely piscivorous pathways whereas SDN from adult carcasses enter food webs through multiple pathways at multiple trophic levels. The SDN from hatchery-origin smolts probably influence different components of the food web more than do adult carcasses and have the potential to more directly affect predator populations.